Epidemia de Diabetes Mellitus Tipo 2 en Latinoamérica

Autores/as

  • Patricio López-Jaramillo Fundación Oftalmológica de Santander-Clínica Carlos Ardila Lulle (FOSCAL) Dirección de Investigaciones, Facultad de Medicina, Universidad de Santander (UDES).
  • Juan José Rey Fundación Oftalmológica de Santander-Clínica Carlos Ardila Lulle (FOSCAL)
  • Yudy A. Rodríguez Facultad de Medicina, Universidad de Santander (UDES).
  • José López-López

Palabras clave:

Diabetes Mellitus tipo 2, Latinoamérica, Programación Fetal, Prevención, Epigenética, Type 2 Diabetes Mellitus, Latin America, Fetal programming, Preventive measures, Epigenetics

Resumen

Introducción: Los países latinoamericanos presentan un crecimiento acelerado de la prevalencia de DM2 por la asociación de determinados condicionantes. La cabal comprensión de estos condicionantes es fundamental para combatir la epidemia de DM2 en Latinoamérica, entendiendo que un programa eficaz de prevención de esta patología demanda un esfuerzo concertado de todos los actores de la sociedad, y no solo del equipo de salud.

Objetivos: Con el fin de detectar algunos condicionantes que posiblemente están asociados a la epidemia de DM2 en Latinoamérica, se revisaron trabajos incluidos principalmente en la base de datos de PubMed; se incluyeron investigaciones de los últimos cinco años, realizadas en el país y la región o en países receptores de migrantes latinoamericanos.

Resultados: La Diabetes Mellitus tipo 2 (DM2) está asociada al incremento en las tasas de obesidad y sobrepeso, producto de la rápida urbanización experimentada en los últimos años, la cual determina cambios en actividad física y hábitos dietéticos. Además, la programación fetal de hijos de madres mal nutridas durante la gestación, determina una mayor sensibilidad de estos niños con bajo peso al nacer para desarrollar resistencia a la insulina e inflamación de bajo grado, especialmente cuando se ven sometidos a un medio de excesos alimentarios (a menudo de “comida chatarra”) para los cuales no estuvieron programados, lo que les lleva a presentar obesidad abdominal y mayor riesgo de DM2.

Discusión: Los condicionantes de la presencia de DM2 en Latinoamérica se relacionan con un desarrollo socio-económico anormal, pues básicamente responden a la contradicción entre la necesidad de adaptación del feto a una alimentación materna defi ciente o a una insuficiencia placentaria producto de enfermedades como la preclampsia; y en la etapa adulta, el modo de vida urbano lleno de excesos alimentarios, con alto consumo de grasas saturadas, harinas, bebidas endulzadas y sedentarismo, condiciones que determinan resistencia a la insulina y DM2.

Palabras clave: Diabetes Mellitus tipo 2, Latinoamérica, Programación Fetal, Prevención, Epigenética.

Abstract

Type 2 Diabetes Mellitus Epidemics in Latin America 

Introduction: Certain conditioning factors have contributed to the increased prevalence of type 2 diabetes mellitus (DM2). In devising a strategy to control DM2 epidemics in the region, it is of paramount importance to fully understand these conditioning factors, since all actors in society have to cooperate with health teams in preventing this pathology.

Objectives: A PubMed search of original work published mainly in last five years on the subject, was carried out. Investigators were in Colombia, the Region and in Hispanic migratory flow receptor countries as well.

Results: DM2 is closely associated to increased rates of obesity and overweight. A large and quick flow of people moving from rural areas to large cities determine changes in dietary habits and a sedentary life style, with increased caloric intake and decreased energy-expenditure. Fetal programming in malnourished pregnant women results in low birth-weight infants prone to develop insulin resistance and low grade inflammation; this is particularly true when they are raised eating high caloric “junk” food, not suitable to their caloric-saving genes. This unfitted nutrition gives adults with abdominal obesity and increased risk of DM2.

Discussion: Children born to undernourished mothers and/or with placental insuffi ciency due to pre-eclampsia are not adapted to an unexpected hypercaloric environement, when there is an abnormal socio-economic development. Higher intakes of saturated fat, carbohydrate-containing food, and glucose-rich beverages together with a sedentary life style are conditioning factors to the increased prevalence of insulin-resistance and DM2 in Latin America.

Key words: Type 2 Diabetes Mellitus, Latin America, Fetal programming, Preventive measures, Epigenetics

 

Biografía del autor/a

Patricio López-Jaramillo, Fundación Oftalmológica de Santander-Clínica Carlos Ardila Lulle (FOSCAL) Dirección de Investigaciones, Facultad de Medicina, Universidad de Santander (UDES).

Dirección de Investigaciones, Desarrollo e Innovación Tecnológica, Fundación Oftalmológica de Santander-Clínica Carlos Ardila
Lulle (FOSCAL).

Juan José Rey, Fundación Oftalmológica de Santander-Clínica Carlos Ardila Lulle (FOSCAL)

Dirección de Investigaciones, Desarrollo e Innovación Tecnológica, Fundación Oftalmológica de Santander-Clínica Carlos Ardila
Lulle (FOSCAL). Observatorio de Salud Pública de Santander. Recibido: Abril 15 de 2010. Aceptado: Octubre 21 de 2010.

Yudy A. Rodríguez, Facultad de Medicina, Universidad de Santander (UDES).

Dirección de Investigaciones, Facultad de Medicina, Universidad de Santander (UDES).

José López-López

Facultad de Medicina, Universidad Autónoma de Bucaramanga (UNAB).

Referencias bibliográficas

King H, Aubert RE, Herman WH. Global burden of diabetes, 1995-2025: prevalence, numerical estimates, and projections. Diabetes Care 1998; 21(9):1414-31.

Hogan P, Dall T, Nikolow P. Economic costs of diabetes in the USA in 2002. Diabetes Care 2003; 26(3):917-32.

Lopez-Jaramillo P, Pradilla LP, Castillo VR, Lahera V. Socioeconomical pathology as determinant of regional differences in the prevalence of metabolic syndrome and pregnancy-induced hypertension. Rev Esp Cardiol. 2007; 60(2):168-78.

Lopez-Jaramillo P, Casas JP, Bautista L, Serrano NC, Morillo CA. An integrated proposal to explain the epidemic of cardiovascular disease in a developing country: From socioeconomic factors to free radicals. Cardiology. 2001; 96(1):1-6.

Ministerio de la Protección Social. República de Colombia. Encuesta Nacional de Salud 2007. Hallado en: www.minproteccionsocial.gov.co/ ,14 de febrero del 2010.

Manzur F, Alvear C, Alayón A. Caracterización fenotípica y metabólica del síndrome metabólico en Cartagena de Indias. Rev Colomb Cardiol 2008; 15(3): 97-101.

Sánchez F, Jaramillo N, Vanegas A, Echeverria JG, Léon AC, Echeverria E, et al. Prevalencia y comportamiento de los factores de riesgo del síndrome metabólico según los diferentes intervalos de edad, en una población femenina del área de influencia de la Clínica de Las Américas, en Medellín-Colombia. Rev Colomb Cardiol 2008; 15(3):102-10.

Lombo B, Villalobos C, Tique C, Satizabal C, Franco C. Prevalencia del síndrome metabólico entre los pacientes que asisten al servicio de la clínica de hipertensión de la Fundación Santa Fe de Bogota. Rev Colomb Cardiol 2006; 12(6):472-8.

Boyd R, Leigh B, Stuart P. Capillary versus venous bedside blood glucose estimations. Emerg Med J.2005; 22(3):177-9.

Sikaris K. The Correlation of Hemoglobin A1c to Blood Glucose. J Diabetes Sci Technol. 2009; 3(3):429-38.

Kruijshoop M, Feskens EJ, Blaak EE, de Bruin TW. Validation of capillary glucose measurements to detect glucose intolerance or type 2 diabetes mellitus in the general population. Clin Chim Acta. 2004; 341(1-2):33-40.

Hales CN, Barker DJ, Clark PM, Cox LJ, Fall C, Osmond C, et al. Fetal and infant growth and impaired glucose tolerance at age 64. BMJ 1991: 303(6809):1019-22.

Hales CN & Barker DJ. Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia 1992; 35(7):595-601.

Lopez-Jaramillo P. Defi ning the research priorities to fi ght the burden of cardiovascular diseases in Latin America. J Hypertens 2008; 26(9):1886-9.

Lopez-Jaramillo P. Cardiometabolic disease in Latin America: The role of fetal programming in response to maternal malnutrition. Rev Esp Cardiol 2009; 62(6):670-6

Barker DJ, Hales CN, FaU CH, Osmoad C, Phipps K, Clark PM. Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): relation to reduced fetal growth. Diabetologia 1993;36(1):62-7

Kuzawa. C. W. Evolution, developmental plasticity and metabolic disease: In Evolution, Health and Disease (Eds. Stearns, S. C. and Koella. J. C.). Oxford University Press, Oxford. 2007 pp 253-264.

López-Jaramillo P, Silva SY, Rodríguez Salamanca N, Duran A, Mosquera W, Castillo V. Are Nutrition- Induced Epigenetic Changes the Link Between Socioeconomic Pathology and Cardiovascular Diseases? Am J Ther 2008; 15(4):362-72.

Wellcome Trust Case Control Consortium. Genomewide association study of 14.000 cases of seven common diseases and 3,000 shared controls. Nature 2007; 447(7145): 661-78.

Whincup PH, Gilg JA, Papacosta O, Seymour C, Miller GJ, Alberti KG, et al. Early evidence of ethnic differences in cardiovascular risk: cross sectional comparison of British South Asían and white children. BMJ 2002; 324(7338):635.

McKeigue PM. Metabolic consequences of obesity and body fat pattern: lessons from migrant studies. Ciba Found. Symp. 1996; 201: 54-64.

Whincup PH, Nightingale CM, Owen CG, Rudnicka AR, Gibb I, McKay CM, et al. Early Emergence of Ethnic Differences in Type 2 Diabetes Precursors in the UK: The Child Heart and Health Study in England (CHASE Study). PLoS Med. 2010; 7(4): e1000263.

Dhandapany PS, Sadayappan S, Xue Y, Powell GT, Rani DS, Nallari P, et al. A common MYBPC3 (cardiac myosin binding protein C) variant associated with cardíomyopathies in South Asia. Nat Genet. 2009; 41(2):187-91.

West-Eberhard MJ. Developmental Plasticity and Evolution (Oxford University Press, New York, 2003).

Gluckman PD, Hanson MA and Beedle AS. Early life events and their consequences for later disease: a life history and evolutionary perspective. Am J Hum Biol. 2007; 19(1):1-19.

Link CL, McKinlay JB. Disparities in the prevalence of diabetes: is it race/ethnicity or socioeconomic status? Results from the Boston Area Community Health (BACH) survey. Ethn Dis. 2009;19(3):288-92.

Beard HA, Al Ghatrif M, Samper-Ternent R, Gerst K, Markides KS. Trends in diabetes prevalence and diabetes-related complications in older Mexican Americans from 1993-1994 to 2004-2005. Diabetes Care. 2009; 32(12): 2212-7.

Lopez-Jaramillo P, Garcia G, Camacho P.A, Herrera E, Castillo V. Interrelationship between body mass index, C-reactive protein and blood pressure in a Hispanic pediatric population. Am J Hypertens 2008; 21(5): 527-32

Goldberg AD, Allis CD, Bernstein E. Epigenetics: a landscape takes shape. Cell 2007; 128(4):635-8.

Weber M, Hellmann I, Stadler MB, Ramos L, Pääbo S, Rebhan M, et al. Distribution, silencing potential and evolutionary impact of prometer DNA methylation in the human genome. Nat. Genet. 2007;39(4):457-66.

Meissner A, Mikkelsen TS, Gu H, Wernig M, Hanna J, Sivachenko A, et al. Genome-scale DNA methylation maps of pluripotentiand differentiated cells. Nature 2008; 454(7205):766-70.

Nightingale KP, O’Neill LP, Turner BM. Histone modifications: signalling receptors and potential elements of a heritable epigenetic code. Curr opin Genet Dev. 2006; 16(2):125-36.

Amaral PP, Mattick JS. Noncoding RNA in development. Mamm Genome.2008;19(7-8):454-92.

Reik W. Stability and fl exibility of epigenetic gene regulation in mammalian development. Nature 2007; 447(7143):425-32.

Ng RK, Dean W, Dawson C, Lucifero D, Madeja Z, Reik W. et al. Epigenetic restriction of embryonic cell lineage fate by methylation of Elf5. Nat Cell Biol 2008;10(11):1280-90.

Park JH, Stoffers DA, Nichoils RD, Simmons RA. Development of type 2 diabetes following intrauterine growth retardation in rats is associated with progressive epigenetic silencing of Pdx1. J Clin Invest. 2008;118(6):2316-24.

Lal G, Zhang N, van der Touw W, Ding Y, Ju W, Bottinger EP, et al. Epigenetic regulation of Foxp3 expression in regulatory T cells by DNA methylation. J Immunol. 2009;182(1):259-73.

Lillycrop KA, Slater-Jefferies JL, Hanson MA, Godfrey KM, Jackson AA, Burdge GC, et al. Induction of altered epigenetic regulation of the hepatic glucocorticoid receptor in the offspring of rats fed a protein restricted diet during pregnancy suggests that reduced DNA methyitransferase-1 expression is involved in impaired DNA methylation and changes in histone modifi cations. Br J Nutr. 2007; 97(6):1064-73.

Bogdarina I, Welham S, King PJ, Burns SP, Clark AJ. Epigenetic modifi cation of the renin-angiotensin system in the fetal programming of hypertension. Círc Res. 2007;100(4):520-6.

Pham TD, MacLennan NK, Chiu CT, Laksana GS, Hsu JL, Lane RH. Uteroplacental insuffi ciency increases apoptosis and alters p53 gene methylalion in the full-term IUGR rat kidney. Am J Physiol Regul Integr Comp Physiol. 2003; 285(5): R962-70.

Fu Q, McKnight RA, Yu X, Wang L, Callaway CW, Lane RH, et al. Uteroplacental insuffi ciency induces site-specifi c changes in histone H3 covalent modification and affects DNA-hístone H3 positioning in day O IUGR rat liver. Physiol Genomícs. 2004; 20(1):108-116.

Raychaudhuri N, Raychaudhuri S, Thamotharan M, Devaskar SU. Histone code modifi cations repress glucose transponer 4 expression in the intrauterine growth-restricted offspring. J Biol Chem. 2008;283(20):13611-26.

Sinclair KD, Allegrucci C, Singh R, Gardner DS, Sebastian S, Bispham J, et al. DNA methylation, insulin resistance, and blood pressure in offspring determined by maternal periconceptional B vitamin and methionine status. Proc Nat Acad Sci USA. 2007; 104(49):19351-6.

Yajnik CS, Deshpande SS, Jackson AA, Refsum H, Rao S, Fisher DJ, et al. Vitamin B and folate concentralions during pregnancy and insulin resistance in the offspring: the Pune maternal nutrition study. Diabetologia.2008; 51(1):29-38.

El-Osta A, Brasacchio D, Yao D, Pocai A, Jones PL, Roeder RG et al. Transient high glucose causes persistent epigenetic changes and altered gen expression during subsequent normoglycemia. J Exp Med. 2008;205(10):2409-17.

Villeneuve LM, Reddy MA, Lanting LL, Wang M, Meng L, Natarajan R, et al. Epigenetic histone H3 lysine 9 methylation in metabolic memory and infl ammatory phenotype of vascular smooth muscle cells in diabetes. Proc Nati Acad Sci USA. 2008;105(26):9047-52.

Ravelli AC, van der Meulen JH, Osmond C, Barker DJ, Bleker OP. Obesity at the age of 50 years in men and women exposed to famine prenatally. Am J Clin Nutr. 1999;70(5):811-6.

Painter RC, de Rooij SR, Bossuyt PM, Simmers TA, Osmond C, Barker DJ, et al. Early onset of coronary artery disease after prenatal exposure to Dutch famine. Am J Clin Nutr. 2006;84(2):322-7.

de Rooij SR, Painter RC, Roseboom TJ, Phillis DI, Osmond C, Barker DJ, et al. Glucose tolerance at age 59 and the decline of glucose tolerance in comparison with age 50 in people prenatally exposed to the Dutch famine. Diabetologia. 2006:49(4):637-43

Heijmans BT, Tobi EW, Stein AD, Putter H, Blauw GJ, Susser ES, et al. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci USA. 2008; 105(44):17046-9.

Drake AJ, Walker BR, Seckl JR. Intergenerational consequences of fetal programming by in útero exposure to glucocorticoids in rats. Am J Physiol Regul Integr Comp Physiol. 2005; 288(1): R34-R38.

Cómo citar

[1]
López-Jaramillo, P. et al. 2010. Epidemia de Diabetes Mellitus Tipo 2 en Latinoamérica. Medicina. 32, 4 (dic. 2010), 308–321.

Descargas

Los datos de descargas todavía no están disponibles.

Descargas

Publicado

2010-12-04

Número

Sección

Artículos de Revisión