ALTERNATIVAS BIOMOLECULARES EN EL TRATAMIENTO DE LA OBESIDAD

Autores/as

  • Fernando Lizcano Centro de Investigación Biomédica Universidad de La Sabana (CIBUS). Facultad de Medicina, Universidad de La Sabana.
  • Diana Vargas Centro de Investigación Biomédica Universidad de La Sabana (CIBUS). Facultad de Medicina, Universidad de La Sabana.

Palabras clave:

Grasa Parda, Obesidad, transcripción, EID1, transdiferenciación, Brown fat, obesity, transcription, transdifferentiation

Resumen

Resumen

La obesidad se ha convertido en un problema de salud pública que cobija tanto a países desarrollados como a aquellos en vía de desarrollo. En la mayoría de los casos las políticas de salud no han tenido el efecto deseado para reducir la prevalencia de esta patología y muchos de los fármacos útiles para contrarrestar la obesidad no han podido continuar en el mercado debido a serios efectos secundarios. Algunas alternativas terapéuticas más agresivas como la cirugías reductivas han demostrado una utilidad restringida. Incluso, recientes observaciones han puesto de manifiesto las consecuencias a largo plazo de este tipo de intervenciones.

En la búsqueda de nuevas estrategias para el tratamiento de la obesidad se ha investigado, tanto en la propia célula grasa como en los genes que podrían ser modificados y cuya función está enfocada en regular el gasto calórico y la termogénesis adaptativa. Algunos de estos genes son modificados por factores de transcripción que pueden determinar la característica fenotípica de la célula grasa. Recientemente se ha observado que en la persona adulta es posible evidenciar vestigios de célula grasa parda que puede gastar energía en forma de calor y esta modificación podría ser una alternativa terapéutica en la obesidad. Nuestro grupo de investigación ha observado que mediante la modificación de la función de la proteína del retinoblastoma (pRb) se pueden aumentar los genes que estimulan la pérdida calórica en el adipocito.

Palabras clave: Grasa Parda, Obesidad, transcripción, EID1, transdiferenciación

BIOMOLECULAR OPTIONS IN TREATING OBESITYAbstract

Obesity is a public health issue for both developed and third world countries. Although many efforts have been made to reverse the trend of this prevalent pathology, no results have been obtained with public health policies in most cases. Furthermore, many medicines approved for treatment of obesity have been withdrawn from the market dueto serious side-effects. Limited usefulness has been observed with aggressive alternative treatments such as bariatric surgery. Recent findings question these intervention procedures due to adverse long-term consequences. In searching for new strategies in treatment of obesity, research has been conducted on the fat cell itself and in genes susceptible to modification that regulate caloric expenditure and adaptive thermogenesis.

Some of these genes aremodified by transcription factors that determine characteristic fat cell phenotype. New research has shown brown fat remnants in adult people, with the possibility of heat energy expenditure, an eventual alternative treatment for obesity. Our group of investigators has observed that, through retinoblastoma protein function (pRb) modification, it is possible to increase the number of genes that stimulate caloric expenditure in the adipocyte.

Key words: Brown fat, obesity, transcription, EID1, transdifferentiation

Biografía del autor/a

Fernando Lizcano, Centro de Investigación Biomédica Universidad de La Sabana (CIBUS). Facultad de Medicina, Universidad de La Sabana.

MD., PhD. Facultad de Medicina Universidad de La Sabana. Presidente de la Asociación Colombiana de Endocrinología.

Diana Vargas, Centro de Investigación Biomédica Universidad de La Sabana (CIBUS). Facultad de Medicina, Universidad de La Sabana.

Biol., MSc, PhD

Referencias bibliográficas

Pasman WJ, Saris WH, Westerterp-Plantenga MS. Predictors of weight maintenance. Obes. Res. 2006; 7: 43-50.

Bermúdez-Silva FJ, Viveros MP, McPartland JM, Rodriguez de Fonseca F. The endocannabinoid system, eating behavior and energy homeostasis: the end or a new beginning?. Pharmacol Biochem Behav. 2010; 95:375-82.

Warren C, Cooper PJ. Psychological effects of dieting. Br J Clin Psychol 1988; 27: 269-70.

Halford JC. Clinical pharmacotherapy for obesity: current drugs and those in advanced development. Curr Drug Targets. 2004; 5: 637-46.

Lee JS, Sheer JL, Lopez N, Rosenbaum S. Coverage of obesity treatment: a state-by-state analysis of Medicaid and state insurance laws. Public Health Rep. 2010; 125:596-04.

Halford JCG, Boyland EJ, Blundell JE, Kirkhan TC, Harrold JA. Pharmacological management of appetite expression in obesity. Nature Rev. Endo. 2010; 6:255-69.

Rogovik AL, Chanoine JP, Goldman RD. Pharmacotherapy and weight-loss supplements for treatment of paediatric obesity. Drugs. 2010; 70:335-46.

National Institute for Clinical Excellence. Obesity: the prevention, identification, assessment and management of overweight and obesity and obesity in adults and children (online), http: //guidance.nice. org.uk/CG43(2006).

Elfhag K, Rossner S. Who succeeds in maintaining weight loss? A conceptual review of factors associated with weight loss maintenance and weight regain. Obes Rev 2005; 6: 67-85.

O´ Rahilly S, Farooqi IS. Genetics of obesity. Philos Trans R Soc Lond B Biol Sci. 2006; 361:1095-1105.

Llewellyn CH, van Jaarveld CH, Boniface D, Carnell S, Wardle J. Eating rate is a heritable phenotype related to weight in children. Am J Clin Nutr. 2008; 88: 1560-66.

Rankinen T, Zuberi A, Chagnon YC, Weisnagel SJ, Argyropoulos G, Walts B. The human obesity gene map: The 2005 update. Obesity 2006; 14: 529-644.

Finlayson G, King N, Blundell JE. Liking vs wanting food: importance for human appetite control and weight regulation. Neurosci Biobehav Rev 2007; 31: 987-02.

Grucza RA, Przybeck TR, Cloninger CR. Prevalence and correlates of binge eating disorder in a community sample. Compr Psychiatr. 2007; 48: 124-31.

Brown WJ, Williams L, Ford JH, Ball K, Dobson AJ. Identifying the energy gap: magnitude and determinants of 5-year weight gain in mid-age women. Obes Res. 2005; 13: 1431-41.

Valezi AC, Junior JM, de Menezes MA, de Brito EM, de Souza SA. Weight Loss Outcome After Silastic Ring Roux-en-Y Gastric Bypass: 8 Years of Followup. Obes Surg. 2010 Sep 2. PMID: 20811958.

Ciangura C, Nocca D, Lindecker V. Guidelines for clinical practice for bariatric surgery. Presse Med. 2010 Aug 30. PMID: 20810234.

Alverdy JC, Prachand V, Flanagan B, Thistlethwaite WA, Siegler M, Garfinkel M, et al. Bariatric Surgery. A history of empiricism, a future in science. J Gastrointest Surg. 2009;13:465-77.

Cypess AM, Lehman S, Williams G, et al. Identification and Importance of Brown Adipose Tissue in Adult Humans. N Engl J Med. 2009; 360:1500-08.

Lichtenbelt W, Vanhommerig JW, Smulders NM, Drossaerts J, Kemerink GJ, Bouvy ND, et al. Cold- Activated Brown Adipose Tissue in Healthy Men. N Engl J Med. 2009; 360:1509-17.

Whitmore C. Type 2 diabetes and obesity in adults. Br J Nurs. 2010; 880: 882-6.

Symonds ME, Sebert Sp, Hyatt MA, Budge H. Nutritional programming of the metabolic syndrome. Nat Rev Endocrinol. 2009; 5: 604-10.

Enerbäck S. The origins of brown adipose tissue. N Engl J Med. 2009; 360:2021-23.

Lidell ME, Enerbäck S. Brown adipose tissue, a new role in humans? Nat Rev Endocrinol. 2010; 6: 319-325.

Kawai M, Sousa KM, MacDougald OA, Rosen CJ. The many facets of PPARgamma: novel insights for the skeleton. Am J Physiol Endocrinol Metab. 2010: 299:E3-9.

Kean S. Drug safety. Planned study of Avandia in doubt after FDA review. Science. 2010;329:75

Enerbäck S. Human brown adipose tissue. Cell Metab. 2010: 11; 248-52.

Frontini A, Cinti S. Distribution and development of brown adipocytes in the murine and human adipose organ. Cell Metab. 2010; 11: 253-56.

Kajimura S, Seale P, Spiegelman BM. Transcriptional control of brown fat development. Cell Metab. 2010; 11: 257-62.

Fruhbeck G, Becerril S, Sainz N, Garrastachu P, Garcia-Velloso MJ. BAT: a new target for human obesity ? Tren Pharmacol Sci 2009; 30:387-96.

Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol Rev. 2004; 84:277-359.

Spiegelman BM. PPAR-gamma: adipogenic regulator and thiazolidinedione receptor. Diabetes 1998; 47: 507-14.

Nielsen R Pedersen TA, Hagenbeek D, Moulos P, Siersbaek R, Megens E, Denissov S, et al. Genomewide profiling of PPARγ:RXR and RNA polymerase II occupancy reveals temporal activation of distinct metabolic pathways and changes in RXR dimmer composition during adipogenesis. Genes & Dev 2008; 22: 2953-67.

Rosen CJ. Revising the Rosiglitazone story- Lessons Learned. N Engl J Med 2010; 363:803-06.

Celi FS. Brown Adipose Tissue – When it pays to be inefficient. N Engl J Med 2009; 360:1553-56.

Hallenborg P, Feddersen S , Madsen L, Kristiansen K. The tumor suppressors pRB and p53 as regulators of adipocyte differentiation and function. Expert Opin. Ther. Targets. 2009; 13: 235-245.

Dali-Youcef N, Mataki C, Coste A, Messaddeq N, Giroud S, Blanc S, et al. Adipose tissue-specific inactivation of the retinoblastoma protein protects against diabesity because of increased energy expenditure. Proc Natl Acad Sci U S A. 2007;104:10703-08.

Mercader J, Ribot J, Murano I, Feddersen S, Cinti S, Madsen L, et al. Haploinsufficiency of the retinoblastoma protein gene reduces diet-induced obesity, insulin resistance, and hepatosteatosis in mice. Am J Physiol Endocrinol Metab. 2009; 297: E184-93.

Calo E, Quintero-Estades JA. Danielian PS, Nedelcu S, Berman SD, Lees JA. Rb regulates fate choice and lineage commitment in vivo. Nature 2010; 466: 1110-15.

MacLellan WR, Xiao G, Abdellatif M, Schneider MD. A novel Rb- and p300-binding protein inhibits transactivation by MyoD. Mol Cell Biol 2000; 20: 8903-8915.

Miyake S, Sellers WR, Safran M, et al. Cells degrade a novel inhibitor of differentiation with E1A-like properties upon exiting the cell cycle. Mol Cell Biol 2000; 20: 8889-902.

Vargas D, Celis L, Romero C, Lizcano F. Modulation of thyroid hormone receptor transactivation by the early region 1A (E1A)-like inhibitor of differentiation 1 (EID1). Genet Mol Biol, 2008; 31: 4009-415.

EID3 is a novel EID family member and an inhibitor of CBP-dependent co-activation. Bavner A, Matthews J, Sanyal S, Gustafsson JA, Treuter E. Nucleic Acid Res 2005; 33: 3561-9.

Uezumi A, Fukada S, Yamamoto N, Takeda S, Tsuchida K. Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle. Nat Cell Biol. 2010;12:143-52.

Vargas D, Lizcano F. Modulation of PPARg activity by CRI-1 (EID1) and the effects of partial agonism. In ENDO 06. The Endocrine Society Press. MD. USA. Boston 2006.

Lizcano F, Vargas D. EID1-induces brown-like adipocyte traits in white 3T3-L1 pre-adipocytes. Biophy Biochem Res Commun. 2010; 398:160-165.

Arner P, Spalding KL. Fat cell turnover in humans. Biochem Biophys Res Commun. 2010;396:101-4.

Almind K, Manieri M, Sivitz WI, Cinti S, Kahn CR. Ectopic brown adipose tissue in muscle providesa mechanism for differences in risk of metabolic syndrome in mice. Proc. Natl. Acad. Sci. U. S. A. 2007; 104: 2366-71.

Kajimura S, Seale P, Spiegelman BM. Transcriptional control of brown fat development. Cell Metab 2010; 11: 961-67.

Tseng YH, Kokkotou E, Schulz TJ, Huang TL, Winnay JN, Taniguchi CM. et al. New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature 2008; 454: 1000-04.

Fruhbeck G, Sesma P, Burrell MA. PRDM16, the interconvertible adipo-myocyte switch. Trends Cell Biol. 2009; 19: 141–6.

Yamamoto K, Sakaguchi M, Medina RJ, Niida A, Sakaguchi Y, Miyazaki M. Transcriptional regulation of a brown adipocyte-specific gene UCP-1, by KLF11 and KLF15. Biochem Biophys Res Commun. 2010;400:175-80.

Cómo citar

[1]
Lizcano, F. y Vargas, D. 2010. ALTERNATIVAS BIOMOLECULARES EN EL TRATAMIENTO DE LA OBESIDAD. Medicina. 32, 3 (sep. 2010), 216–222.

Descargas

Los datos de descargas todavía no están disponibles.

Descargas

Publicado

2010-09-11

Número

Sección

Artículos de Revisión