Interferencia de la infección por rotavirus mediante la inhibición de la actividad de la proteína disulfuro isomerasa (DPI) de la membrana celular de las líneas MA104 y Caco-2.

Autores/as

  • Carlos Arturo Guerrero Fonseca Universidad Nacional de Colombia
  • Martha N. Calderón Universidad Nacional de Colombia
  • Orlando Acosta Losada Universidad Nacional de Colombia
  • Fanny Guzmán Universidad Nacional de Colombia

Palabras clave:

rotavirus, Biología Molecular de virus, virología, gastroenteritis

Resumen

Los rotavirus son la causa más común de gastroenteritis severa en niños menores de cinco años, ocasionando episodios diarreicos agudos responsables de 454.000 a 705.000 muertes anuales a nivel mundial. Aunque la frecuencia de infección con rotavirus es muy similar a través del mundo, en los países en desarrollo la gastroenteritis rotaviral es la mayor causa de muerte infantil.  La diarrea rotaviral severa cursa con vómito y fiebre, produciendo deshidratación con shock, desbalance electrolítico, y muerte si esta no es tratada. En los países desarrollados, la infección rotaviral es responsable del 30 - 50% de las hospitalizaciones debidas a gastroenteritis en menores de 5 años. Además, los rotavirus son una causa importante en la gastroenteritis nosocomial.   

Biografía del autor/a

Carlos Arturo Guerrero Fonseca, Universidad Nacional de Colombia

Laboratorio de Biologia Molecular de Virus. Facultad de Medicina

Martha N. Calderón, Universidad Nacional de Colombia

Departamento de Ouimica. Facultad de Ciencias

Orlando Acosta Losada, Universidad Nacional de Colombia

Laboratorio de Biologia Molecular de Virus. Facultad de Medicina

Fanny Guzmán, Universidad Nacional de Colombia

Departamento de Ouimica. Facultad de Ciencias

Referencias bibliográficas

Abell BA, Brown DT. 1993. Sindbis virus membrane fusion is mediated by reduction of glycoprotein disulfide bridges at the cell surface. J Virol 67:5496-5501

Altenburg, B. C, D. y. Graham, and M. K. Estes 1980. UItrastructural

study of rotavirus replication in cultured cells. J Gen Virol. 46:75-85.

Angel, J., Franco, MA and Greenberg, H.B. 2007. Rotavirus vaccines: recent developments and future considerations.

NATURE REVIEWS. MICROBIOLOGY. 5 529-39

Arias, C.F, Guerrero, CA, Méndez, E, Zárate, S, Isa, P, Espinosa,

R, Romero, P López, S. 2000. Early events of rotavirus

infection: the search for the receptor(s). In Gastroenteritis

Viruses. MK Estes and U Desselberger ed. John Wiley and Sons Ud. New York.

Arias, C F., P. Romero, V. Alvarez, and S. López 1996.

Trypsin activation pathway of rotavirus infectivity. J Virol.

:5832-5839

Bass, D. M., M. R Baylor, C. Chen, E. M. Mackow, M. Bremont,

and H. B

Ciarlet, M. 2002b. VLA-2 (alfa2beta1) integrin promotes

rotavirus entry into cells but is not necessary for rotavirus

attachment J. Virol. 76,1109-1123

Ciarlet, M. 2002a Initial interaction of rotavirus strains with

N-acetylneuraminic (sialic) acid residues on the cell surface

correlates with VP4 genotype, not species of origino J. Virol.

,4087-4095

Conner,M., S., Blutt 2007 Rotavirus: to the gut and beyondl

Gastrointestinal infections Current Opinion in Gastroenterology.

(1 )39-43

Coulson, B. S., S. H. Londrigan, D. J. Lee 1997. Rotavirus

contains integrin ligand sequences and a disintegrin-like

doma in implicated in virus entry into cells. Proc. Natl. Acad.

Sci. USA94:5389-5394

Cuadras M., Méndez E., Arias CF, López S. 1998 A new

cysteine in rotavirus VP4 participates in the formation of an

alternate disulfide bond. Journal of General Virology. 79,

-2677.

Delorme C, Brüssow H, Sidoti J, Roche N, Karlsson KA,

Neeser JR, Teneberg S. 2001. Glycosphingolipid binding

specificities of rotavirus: identification of a sialic acid-binding

epitope. J Virol, 75:2276-2287.

Dennehy P.H. 2007. Rotavirus vaccines-An update Vaccine

(3137-31413141.

Dormitzer, P.R et al. 2002 Specificity and affinity of sialic

acid binding by the rhesus rotavirus VP8* coreo J. Virol. 76.

-10517.

Essex, O, Chan K, Swiatkowska M. 1995. Localization of

POI to the external surface of the platelet plasma membrane.

Blood, 86(6):2168-2173.

Estes M. K, Graham, DY, y Manso, B.B. 1981. Proteolytic

enhancement of rotavirus infectivity: molecular mechanisms.

J. Vi rol. , 39, 879-888.

Estes, M. K. (1996). Rotaviruses and their replication. In

"Virology" (N. Fields, D. M. Knipe, and P M. Howley, Eds.),

rd ed., pp. 1625-1655. Raven Press, New York.

Fiore, L. 1991 The VP8 fragment of VP4 is the rhesus

rotavirus hemagglutinin. Virology 181: 553-563.

Freedman, RB, P Klappa. 1999. In Bukau, B. (Ed) Protein

Disulfide Isomerase A catalyst of thiol:disulfide Interchange

and Associated Proteln Folding. Harwood Academic Press,

London, UK, pp 437-459.

Graham, D. Y and M. K. Estes. 1988. Viral infections ofthe

intestine, p566-578 In G. Gitnick (ed.), Gastroenterology

Medical Examination Publishing Company, New Hyde Park,

NY

Graham, KL 2003. Integrin-using rotaviruses bind alpha2-

integrin alpha2 I domaln via VP4 DGE sequence and

recognize alphaX¡)2 and alphaVj3 by using VP7 during cell

entry. J. Virol. 77, 9969-9978

Gajardo, R, P Vende, D. Poncet, and J. Cohen 1997. Two

proline residues are essential in the calcium-binding activity

of rotavirus VP7 outer capsid protein. J. Virol. 712211-

Greenberg 1992. Liposome-mediated transfection of intact

viral particles reveals that plasma membrane penetration

determines permissivity of tissue culture cells to rotavirus. J

Clin Inves!. 902313-20.

Guerrero. C A, E.Méndez, S Zárate, Pisa, S. López, and

C F Arias. 2000. Integrin alpha(v)I)(3) mediates rotavirus

cell entry Proc. Natl. Acad. Sci. USA 9714644-14649.

Guerrero, CA 2000. Biochemical characterization of rotavirus

receptors in MA104 cells. J. Virol. 74, 9362-9371

Guerrero, C A 2000. Identificación y caracterización del

receptor de Rotavirus independiente de ácidos siálicos. Tesis

doctoral, Doctorado en Ciencias Bioquimicas Universidad

Autónoma de México

Guerrero, e A, D. Bouyssounade, S Zarate, R Espinosa.

P Romero, E. Mendez, S López, and C F. Arias. 2002. The

heat shock cognate protein 70 IS involved in rotaVlrus cell

entry J Virol. 764096-4102.

Hewish, M. J., Y Takada, B. S Coulson 2000. Integrins uXI)2

and uX4111 can mediate SA 11 rotavirus attachment and entry

into cells. J Virol. 74228-236.

Jayaram H, Estes MK, Prasad BV (2004). Emerging themes

In rotavirus cell entry, genome organization, transcription and

replication Virus Res. 101(1) 67-81

Jiang. X. M, Fltzgerald, M, Gran!. e M. and Hogg, P J

(1999) J. Biol. Chem274, 2416-2423.

Jimena Pérez-Vargas, Pedro Romero, Susana Lo'pez, and

Carlos F. Arias*2006 The Peptide-Binding and ATPase

Domalns of Recomblnant Hsc70 Are Required To Interact

wlth RotaVlrus and Reduce Its InfecllvityJOURNAL OF

VIROLOGY, Apr, p 3322-3331 Vol. 80, No. 7

Jolly. eL. et al. (2000) Rotavirus infection of MA 104 cells IS

Inhlbited by Ricinus lectln and separately expressed single

bindlng domains. Virology 275, 89-97

Kaplkian A Z, R M. Chanock. 2000. Rotaviruses. In B. N

Flelds, D. N Knipe, P M. Howley, R M Chanock. J L. MelnlCk,

T. P Monath, B Roizman. S E. Straus (eds) Vlrology,

vol.2 Raven Press, New Cork, p 1787-1833

Kluwer Academic Publishers. Yoshlmori, T., Semba. T., Takemoto,

H, Akagl, S, Yamamoto, A, and Tashiro, Y (1990) J

Blol. Chem 265. 15984-15990

Langenbach KJ, Sottile J 1999 Identificallon of protelndisulflde

Isomerase activlty In fibroneclln. J Blol Chem

-7038

Locker JK, Griffiths G 1999 An unconventional role for

cytoplasmic disulfide bonds in vaccinia virus proteins. J Cell

Biol.144267 -279

López, S, e F Arias. 2004 Multistep entry of rotavirus into

cells: a Versaillesque dance. TRENOS in Microbiology 12

-278

López, S, Espinosa, R, Isa, P, Zárate, S, Méndez, E, Arias,

CF 2000. Characterization of a Monoelonal Antibody Oirected

to the Surface of MA 104 Cells that Blocks the Infectivity

of Rotaviruses. Virology 273160-168

López, T, López S, Arias CF. 2006. Heat shock enhances

the susceptibility of BHK cells to rotavirus infection through

the facilitation of entry and post-entry virus replication steps

Virus Research, 121 (1)74-83

López, S, Arias, C F, Bell, J. R, Strauss, J. H., and Espejo,

R T (1985). Primary structure of the cleavage site associated

with trypsin enhancement of rotawus SA 11 infectivity.

Virology 144,11-19

Macer OR. Koch GL. 1988. Identification of a set of calciumblnding

proteins in reticuloplasm, the luminal content of the

endoplasmic reticulum J Cell Sci 9161-70.

Mahmoud S Shah Rabadi, LomeA. Babiuk, Patrick W K. Lee.

Further analysis ofthe role of calcium In rotavirus morphogenesis

Virology, Volume 158, Issue 1 May, Pages 103-111

Mandel R, Ryser HJ, Ghani F,Wu M, Peak 0.1993. Inhibition

of a reductive function of the plasma membrane by bacitracin

and antibodles against protein disulfide-isomerase Proc Natl

Acad Sci USA 904112-4116

Markovic 1,Pulyaeva H, Sokoloff A, Chernomordik LV 1998.

Membrane fusion mediated by baculovirus gp64 involves

assembly of stable gp64 trimers into multlprotein aggregates

J Cell Biol..143:1155-1166

Markovic, 1, T S Stantchev, K. H. Fields, L. J. Tiffany, M.

Tomi, e O. Weiss, CC Broder, K. Strebel, K. A Clouse.

Thiol/disulfide exchange is a pre-reqUlsite for CXCR4-

tropic HIV-1 envelope mediated T-cell fusion during viral

entry. Blood. First Edition Paper (05)1390

Mathieu, M, l. Petitpas, J. Navaza, J. Lepault, E. Kohli, P

Pothier, B. V Prasad, J. Cohen, and FA. Rey 2001. Atomic

structure of the major capsid protein of rotavirus implications

for the architecture of the virion. Embo J. 20 1485-1497.

MatthiJnssens, J. et al. Full genomic analysls of human

rotavirus strain B4106 and lapine rotavirus straln 30/96

provides evidence for Interspecies transmission J. Virol. 80.

-3810 (2006).

Mosman, T 1983 Rapid colonmetric assay for cellular growth

and survival application of proliferation and cytotoxicity

assay. J Immunol Methods. 6555-63

Mossel, E.C. and RF Ramig. 2003 A Iymphatic mechanism

of rotavirus extraintestlnal spread In the neonatal mouse J

Vlrol. 77,12352-12356

Méndez. E. López, S, Cuadras. M. A. Romero. P and

Arias. C F. 1999. Entry of rotavlruses IS a multlstep process

Virology 263 450-459

M. Fenaux, M. A Cuadras. N FenCj M Jalmes. iJrld H B

Greenberg' Extraintestlnal Spread and Repllcatlon of a Homologous

EC Rotavlrus Straln imd a Heterologous Rhesus

Rotawus In BALB/e Miee J Vlrol. 2006 Vol. cm. No 11. p

-5232

O'Nei11S, Roblnson A OeEmngA Ryan M FitlCjcrald O,J Moran

N. 2CJ(JOThe platclet IntccJrin iJIII3 liélS an endogenous

thlollsorncrasc actlvlty J Blol Ctwm :U53fi9iJ4-36990

Ou W, Silver J. 2006. Role of protein disulfide isomerase

and other thiol-reactive proteins in HIV-1 envelope proteinmediated

fusion. Virology 350: 406-417

Parashar UD, Gibson CJ, Bresse JS, Glass RI. Rotavirus and

severe childhood diarrhea. Emerg Infect Ois 2006;12(2):304-6.

Patton, J. T, J. Hua, and E. A Mansell 1993. Location of

intrachain disulfide bonds in the VP5* and VP8* trypsin

cleavage fragments of the rhesus rotavirus spike protein

VP4. J Virol. 674848-4855.

Pavell, Realpe M, Romero P, López S ,Arias CF 2004 Rotavirus

RRV associates with lipid membrane microdomains

during cell entry Virology, 322, (2): 370-38.

Pesavento, J.B., Estes, MK, Prasad, BVV, 2003. Structural

organization of the genQme in rotavirus. In: Oesselberger, U.,

Gray, J. (Eds.), Viral Gastroenteritis, first ed., vol. 9. Elsevier

Science, Amsterdam, pp. 115-128

Prasad, B. V, G. J. Wang, J. P Clerx, and W Chiu 1988.

Three-dimensional structure of rotavirus. J Mol Biol. 199:269-

Ramig RF 2004 Pathogenesis of intestinal and systemic

rotavirus infection. J Virol. 78(19) 10213-20.

Reuter K, Nottrott S, Fabrizio P, Luhrmann R, Ficner R

Identification, characterization, and crystal structure

analysis of the human spliceosomal U5 snRNP-specific 15

kOa protein. J Mol Biol 294515-525.

Ryser, H. J P, Mandel, R, Gallina,A, and Rivera, A (1997)

in Propyl 4-Hydroxylase, Protein Oisulfide Isomerase and

Other Structurally Related pProteins (Guzman, N. A, ed)

pp. 425-446, Marcel Oekker, Inc., New York

Ryser, H. J. P., Mandel, R, and Rivera, A. (1999) in Plasma

Membrane Redox Systems and Their Role in Biological

Stress and Oisease (Asard, H, Berczi, A, and Caubergs,

R J, eds) pp 229-307.

Ryser HJ, Levy EM, Mandel R, OiSciullo GJ. 1994. Inhibition

of human immunodeficiency virus infection by agents that

interfere with thiol-disulfide interchange upon virus receptor

interaction. Proc Natl Acad Sci U S A 914559-4563

Schwaller M, Wilkinson B, Gilbert HF. 2003. Reduction-reoxidation

eyeles contribute to catalysis of disulfide isomerization

by protein-disulfide isomerase J Biol Chem. 278(9)7154-

Superti F, G. Oonelli 1991 Gangliosides as binding sites

in SA-11 rotavirus infection of LLC-MK2 cells. J Gen Virol.

Oct;72 (Pt 10):2467-74

Svensson, L., P. R Oormitzer, B. C. von, L. Maunula, and

H. B. Greenberg 1994. Intracellular manipulation of disulfide

bond formation in rotavirus proteins during assembly. J. Virol.

5204-5215.

Tager M, Kroning H, Thiel U, Ansorge S. 1997. Membranebound

proteindisulfide isomerase (POI) IS involved in regulation

of surface expression of thiols and drug sensitivity of

B-CLL cells Exp Hematol 25601-607.

Trask SO, Oormitzer PR 2006 Assembly of highly infeetious

rotavirus particles recoated with recombinant outer capsid

proteins. J Virol 80 11293-11304

Terada, K., Manchikalapudi, P, Noiva, R, Jauregui, H. O,

Stoekert, R J .. and Schilsky, M. L. (1995) J. Biol. Chem. 270,

-20416.

Turano, C, S Copparl, F Altieri, A Ferraro. 2002. Proteins

of the POI Family Unpredicted Non-ER Locations and

Funetions. J. Cell. Phys. 193154-163

Wallin M., Ekstro"m M., Garoff H. 2004. Isomerization ofthe

intersubunit disulphide-bond in Env controls retrovirus fusiono

The EMBO Journal 23, 54-65

Weston, BS., Wahab, N., Roberts, T., Mason, R. 2001. Bacitracin

inhibits fibronectin matrix assembly by mesangial cells

in high glucose. Kidney International, Vol. 60 1756-1764

Yaeger, M., M. Anderson. 2003 Rotavirus Stilllmpact Bottom

Line. TGE, National Hog Farmer p. 3-5

Zai, A, Rudd, M. A, Scribner, A W, and Loscalzo, J. (1999)

J. Clin. Invest. 103,393-399.

Zárate, S., M. A Cuadras, R. Espinosa, P. Romero, K. O.

Juárez, M. Camacho-Nuez, C. F. Arias, S. López. 2003.

Interaction of Rotaviruses with Hsc70 during Cell Entry Is

Mediated by VP5 J Virol. p. Vol. 77(13) 7254-7260

Zárate, S, R. Espinosa, P. Romero, E. Méndez, C. F. Arias,

S. López 2000. The VP5 domain of VP4 can mediate attachment

of rotaviruses to cells. J Virol. 74:593-599

Zárate, S., R. Espinosa., P Romero, C. A Guerrero., C F.

Arias, S. López. 2000. Integrin alpha 211 1 mediates the cell

attachment of the rotavirus neuraminidase-resistant variant

nar3. Virology Vol 278 p 50 - 54

Zárate S, Cuadras MA, Espinosa P, Romero P, Juarez KO,

Camacho-Nuez M, Arias CF, Lopez S. 2003. Interaction of

rotaviruses with HSC70 during cell entry is mediated by VP5.

J Virol 77: 7254-7260

Zárate S, Romero P, Espinosa R, Arias CF, Lopez S . 2004.

VP7 mediates the interaction of rotaviruses with integrin

uvlB through a novel integrin-binding site. J Viro178: 10839-

Cómo citar

[1]
Guerrero Fonseca, C.A. et al. 2008. Interferencia de la infección por rotavirus mediante la inhibición de la actividad de la proteína disulfuro isomerasa (DPI) de la membrana celular de las líneas MA104 y Caco-2. Medicina. 30, 4 (dic. 2008), 229–258.

Descargas

Los datos de descargas todavía no están disponibles.

Descargas

Publicado

2008-12-03

Número

Sección

Artículos de Investigación