Aplicaciones de la multiómica de célula única en la investigación del cáncer


  • Oscar Arrieta Instituto Nacional de Cancerología – INCaN, México City
  • Rafael Rosell Germans Trias i Pujol Research Institute, Badalona
  • Andrés F. Cardona Centro de Tratamiento e Investigación sobre Cáncer (CTIC)




Precision oncology, defined as molecular profiling of tumors to identify targetable alterations, is rapidly developing, and has entered the mainstream clinical practice. Genomic testing involves stakeholders workingnin a coordinated fashion to deliver high-quality tissue samples to laboratories, where appropriate next-generation sequencing (NGS) molecular analysis leads to actionable results. Clinicians should be familiar with the types of genomic variants reported by the laboratory and the technology used to determine the effects, including limitations of current testing methodologies and reports. Genomic results are best interpreted with multidisciplinary input to reduce uncertainty in clinical recommendations relating to a documented variant

Biografía del autor/a

Oscar Arrieta, Instituto Nacional de Cancerología – INCaN, México City

Thoracic Oncology Unit, Instituto Nacional de Cancerología – INCaN, México City, México

Rafael Rosell, Germans Trias i Pujol Research Institute, Badalona

Germans Trias i Pujol Research Institute, Badalona (IGTP), Spain
IOR, Hospital Quiron-Dexeus Barcelona, Spain

Andrés F. Cardona, Centro de Tratamiento e Investigación sobre Cáncer (CTIC)

Institute of Research, Science and Education / Thoracic Oncology Unit, Luis Carlos Sarmiento Angulo Cancer Treatment and Research Center – CTIC, Bogotá, Colombia

Referencias bibliográficas

Schwartzberg L, Kim ES, Liu D, Schrag D. Precision Oncology: Who, How, What, When, and When Not? Am Soc Clin Oncol Educ Book. 2017;37:160-169. doi: 10.1200/EDBK_174176.

Takeuchi S, Okuda S. Knowledge base toward understanding actionable alterations and realizing precision oncology. Int J Clin Oncol. 2019;24(2):123-130. doi: 10.1007/s10147-018-1378-0.

Paolillo C, Londin E, Fortina P. Next generation sequencing in cancer: opportunities and challenges for precision cancer medicine. Scand J Clin Lab Invest Suppl. 2016;245:S84-91. doi: 10.1080/00365513.2016.1210331.

Bumbea H, Vladareanu AM, Voican I, Cisleanu D, Barsan L, Onisai M. Chronic myeloid leukemia therapy in the era of tyrosine kinase inhibitors--the first molecular targeted treatment. J Med Life. 2010;3(2):162-6.

Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, et al. The sequence of the human genome. Science. 2001;291(5507):1304-51. doi: 10.1126/ science.1058040.

Sjöblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD, et al. The consensus coding sequences of human breast and colorectal cancers. Science. 2006;314(5797):268-74. doi: 10.1126/science.1133427.

Piotrowski A, Bruder CE, Andersson R, Diaz de Ståhl T, Menzel U, et al. Somatic mosaicism for copy number variation in differentiated human tissues. Hum Mutat. 2008;29(9):1118-24. doi: 10.1002/humu.20815.

Dollé ME, Snyder WK, Gossen JA, Lohman PH, Vijg J. Distinct spectra of somatic mutations accumulated with age in mouse heart and small intestine. Proc Natl Acad Sci U S A. 2000;97(15):8403-8. doi: 10.1073/ pnas.97.15.8403.

Jacobs KB, Yeager M, Zhou W, Wacholder S, Wang Z, Rodriguez-Santiago B, et al. Detectable clonal mosaicism and its relationship to aging and cancer. Nat Genet. 2012;44(6):651-8. doi: 10.1038/ng.2270.

Frey LJ, Piccolo SR, Edgerton ME. Multiplicity: an organizing principle for cancers and somatic mutations. BMC Med Genomics. 2011;4:52. doi: 10.1186/1755-8794-4-52.

Faggioli F, Wang T, Vijg J, Montagna C. Chromosome-specific accumulation of aneuploidy in the aging mouse brain. Hum Mol Genet. 2012;21(24):5246-53. doi: 10.1093/hmg/dds375.

Zhang L, Vijg J. Somatic Mutagenesis in Mammals and Its Implications for Human Disease and Aging. Annu Rev Genet. 2018;52:397-419. doi: 10.1146/annurev-genet-120417-031501.

Cinnioglu C, Kayali R, Darvin T, Akinwole A, Jakubowska M, Harton G. Aneuploidy Screening using Next Generation Sequencing. Methods Mol Biol. 2019;1885:85-102. doi: 10.1007/978-1-4939-8889- 1_6.

Gallon R, Mühlegger B, Wenzel SS, Sheth H, Hayes C, Aretz S, et al. A sensitive and scalable microsatellite instability assay to diagnose constitutional mismatch repair deficiency by sequencing of peripheral blood leukocytes. Hum Mutat. 2019;40(5):649-655. doi: 10.1002/humu.23721.

Kumar N, Sethi G. Telomerase and hallmarks of cancer: An intricate interplay governing cancer cell evolution. Cancer Lett. 2023:216459. doi: 10.1016/j. canlet.2023.216459.

Salk JJ, Fox EJ, Loeb LA. Mutational heterogeneity in human cancers: origin and consequences. Annu Rev Pathol. 2010;5:51-75. doi: 10.1146/annurev-pathol-121808-102113.

Helleday T, Eshtad S, Nik-Zainal S. Mechanisms underlying mutational signatures in human cancers. Nat Rev Genet. 2014;15(9):585-98. doi: 10.1038/nrg3729.

Zhu Z, Jiang L, Ding X. Advancing Breast Cancer Heterogeneity Analysis: Insights from Genomics, Transcriptomics and Proteomics at Bulk and Single-Cell Levels. Cancers (Basel). 2023;15(16):4164. doi: 10.3390/cancers15164164.

Hu Y, An Q, Sheu K, Trejo B, Fan S, Guo Y. Single Cell Multi-Omics Technology: Methodology and Application. Front Cell Dev Biol. 2018;6:28. doi: 10.3389/ fcell.2018.00028.

Chen C, Wang J, Pan D, Wang X, Xu Y, Yan J, et al. Applications of multi-omics analysis in human diseases. MedComm (2020). 2023;4(4):e315. doi: 10.1002/ mco2.315.

Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods. 2009;6(5):377-82. doi: 10.1038/nmeth.1315.

Dey SS, Kester L, Spanjaard B, Bienko M, van Oudenaarden A. Integrated genome and transcriptome sequencing of the same cell. Nat Biotechnol. 2015;33(3):285-289. doi: 10.1038/nbt.3129.

Macaulay IC, Haerty W, Kumar P, Li YI, Hu TX, Teng MJ, et al. G&T-seq: parallel sequencing of single-cell genomes and transcriptomes. Nat Methods. 2015;12(6):519-22. doi: 10.1038/nmeth.3370.

Han KY, Kim KT, Joung JG, Son DS, Kim YJ, Jo A, et al. SIDR: simultaneous isolation and parallel sequencing of genomic DNA and total RNA from single cells. Genome Res. 2018;28(1):75-87. doi: 10.1101/ gr.223263.117.

Angermueller C, Clark SJ, Lee HJ, Macaulay IC, Teng MJ, Hu TX, et al. Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity. Nat Methods. 2016;13(3):229-232. doi: 10.1038/ nmeth.3728.

Hu Y, Huang K, An Q, Du G, Hu G, Xue J, et al. Simultaneous profiling of transcriptome and DNA methylome from a single cell. Genome Biol. 2016;17:88. doi: 10.1186/s13059-016-0950-z.

Farlik M, Halbritter F, Müller F, Choudry FA, Ebert P, Klughammer J, et al. DNA Methylation Dynamics of Human Hematopoietic Stem Cell Differentiation. Cell Stem Cell. 2016;19(6):808-822. doi: 10.1016/j.stem.2016.10.019.

An Y, Zhao X, Zhang Z, Xia Z, Yang M, Ma Let al. DNA methylation analysis explores the molecular basis of plasma cell-free DNA fragmentation. Nat Commun. 2023;14(1):287. doi: 10.1038/s41467-023-35959-6.

Pan D, Jia D. Application of Single-Cell Multi-Omics in Dissecting Cancer Cell Plasticity and Tumor Heterogeneity. Front Mol Biosci. 2021;8:757024. doi: 10.3389/fmolb.2021.757024.

Cómo citar

Arrieta, O. et al. 2023. Aplicaciones de la multiómica de célula única en la investigación del cáncer. Medicina. 45, 4 (dic. 2023), 621–626. DOI:https://doi.org/10.56050/01205498.2304.


Los datos de descargas todavía no están disponibles.



Crossref Cited-by logo