RIESGOS DE SER UN ASTRONAUTA: HÉROES DEL ESPACIO

Autores/as

  • Flor de María Muñoz Gallego Universidad del Cauca
  • María Virginia Pinzón Fernández Universidad del Cauca
  • Luisa Fernanda Zúñiga Cerón Grupo de Investigación en Salud (GIS)
  • Luisa Fernanda Mahecha Virgüez Universidad del Cauca
  • Jhan Sebastián Saavedra-Torres Universidad del Cauca

Palabras clave:

Astronautas, sistema cardiovascular, cáncer, osteoporosis, enfermedades espaciales, alteraciones de conducta, evaluación de riesgos, vuelo espacial, programas espaciales

Resumen

Objetivo: Realizar una revisión documental acerca de los riesgos, complicaciones y cambios fisiológicos que experimentan los astronautas bajo la ausencia de gravedad y exposición a dosis de radiación cósmica. Metodología: Se desarrolló una revisión bibliográfica de cada referencia entre un margen de tiempo de 38 años, entre 1980 y 2018, con el fin de analizar la evidencia actual validada que abordan los estudios sobre los riesgos, complicaciones y cambios fisiológicos que experimentan los astronautas en los viajes espaciales, y sus implicaciones clínicas y biológicas. De ese modo, se recolectó un total de 821 bibliografías, de las cuales se lograron tamizar y referenciar 85 bibliografías, a partir de la búsqueda bibliográfica en la base de datos oficial de la NASA: NTRS - NASA Technical Reports Server (https://ntrs.nasa.gov/search.jsp); La búsqueda se limitó a la revisión de artículos originales, informes de la agencia espacial, libros de medicina aeroespacial, resúmenes de ponencias y experimentos publicados en el idioma inglés por parte de la NASA; no se usaron los términos MeSH porque la base de datos oficial de la NASA permite el análisis detallado por temas, sin ingresar fórmulas o términos de búsqueda de sus propios estudios. Para la gestión y la organización de la información, se utilizó el programa de libre acceso Mendeley. Resultados y conclusión: Los estudios describen que la exposición a la radiación ionizante y a la falta de gravedad en los astronautas, son factores de riesgos determinantes para padecer enfermedades y cambios fisiológicos de importancia, antes y después de una misión espacial de larga duración. Sin embargo, las agencias espaciales reducen todos los riesgos con entrenamientos, herramientas tecnológicas, análisis clínicos y genealógicos de los tripulantes de una misión interplanetaria.

Biografía del autor/a

Flor de María Muñoz Gallego, Universidad del Cauca

Licenciada en Biología. M.Sc. Fisióloga. Profesora Asociada, Departamento de Ciencias Fisiológicas, Universidad del Cauca. Popayán, Colombia.

María Virginia Pinzón Fernández, Universidad del Cauca

Bacterióloga. Esp. Educación. Maestría en Salud Pública. Candidata a doctorado en Antropología médica. Profesora titular de la Universidad del Cauca. Popayán, Colombia.

Luisa Fernanda Zúñiga Cerón, Grupo de Investigación en Salud (GIS)

Médica Interna. Universidad Nacional de Colombia, Facultad de Medicina. Corporación Del Laboratorio al Campo (DLC). Grupo de Investigación en Salud (GIS). Popayán, Colombia.

Luisa Fernanda Mahecha Virgüez, Universidad del Cauca

Enfermera Profesional. Universidad del Cauca, Facultad de Ciencias de la Salud, Departamento de Enfermería. Grupo de Investigación en Salud (GIS). Popayán, Colombia.

Jhan Sebastián Saavedra-Torres, Universidad del Cauca

Médico Interno. Universidad del Cauca, Facultad de Ciencias de la Salud, Departamento de Medicina Interna. Corporación Del Laboratorio al Campo (DLC). Grupo de Investigación en Salud (GIS). Popayán, Colombia.

Referencias bibliográficas

1. Townsend LW. Implications of the space radiation environment for human exploration in deep space. Radiat Prot Dosimetry. 2005; 115: 44–50. Doi: 10.1093/rpd/ nci141
2. Boddy J. From shrinking spines to space fungus: The top five dangers of space travel. Dec. 2, 2016; Science. shrinking-spines-space-fungus-top-five-dangers-spacetravel, Posted in: Brain & Behavior Space. Doi: 10.1126/ science. aal0451
3. Carrillo R. Medicina espacial. 1ª ed. México: Academia Nacional de Medicina; 2016. ISBN 978-607-443-624-2.
4. Stewart LH, Trunkey D, Rebagliatti SG. Emergency medicine in space. J Emerg Med. 2007; 32: 45-54.
5. Taylor WE. Alteration of gene expression profiles in skeletal muscle of rats exposed to microgravity during a spaceflight. Life Sciences (General). Journal of gravitational physiology: a journal of the International Society for Gravitational Physiology. 9 (2): 61-70. ISSN: 10779248
6. Willey JS, Lloyd SA, Nelson GA, Bateman TA. Space radiation and bone loss. Gravit Space Biol Bull. 2011; 25: 14-21.
7. Liakopoulos U, Leivaditis K, Eleftheriadis T, Dombros N. The kidney in space. Int Urol Nephrol. 2012; 44: 1893901.
8. Stein TP. Weigth, muscle and bone loss during space flight: another perspective. Eur J Appl Physiol. 2013: 2171-81.
9. Hughson RL. Recent findings in cardiovascular physiology with space travel. Resp Physiol Neurobiol. 2009; 169: 38-41.
10. Sibonga JD. Managing the Risk for Early Onset Osteoporosis in Long-Duration Astronauts Due to Spaceflight. NASA Johnson Space Center; Houston, TX, United States. Life Sciences (General); JSC-CN-21978.
11. Layne CS, Forth KE. Plantar stimulation as a possible countermeasure to microgravity-induced neuromotor degradation. Aviation Space and Environmental Medicine. 2008; 79: 787–794.
12. LeBlanc A, Matsumoto T, Jones J, Shapiro J, Lang T, Shackelford L, et al. Bisphosphonates as a supplement to exercise to protect bone during long-duration spaceflight. Osteoporosis International: A Journal Established as Result of Cooperation Between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. 2013.
13. Carl J. Ade, PhD, Incidence Rate of Cardiovascular Disease End Points in the National Aeronautics and Space Administration Astronaut Corps. J Am Heart Assoc. 2017 Aug; 6(8): e005564. J Am Heart Assoc. 2017 Aug; 6(8): e005564. Published online 2017 Aug 7. Doi: [10.1161/ JAHA.117.005564]
14. Abrosimova AN, Shafirkin AV, Fedorenko BS. Probability of lens opacity and mature cataracts due to irradiation at various LET values. Aviakosm Ekolog Med. 2000; 34(3): 33–41.
15. Human Health and Performance Risks of Space Exploration Missions, (Jancy C. McPhee and John B. Charles, editors), NASA SP-2009-3405, 2009.
16. Charvat JM, Lee SM, Wear M, Stenger L, Michael B, Van Baalen M. Cardiovascular Disease Outcomes Among the NASA Astronaut Corps. NASA Center: Johnson Spa ce Center, Jan 22, 2018; 20170010301; JSC-CN-40701. 2018 NASA Human Research Program Investigators’ Workshop (HRP IWS 2018); 22-25 Jan. 2018; Galveston, TX; United States.
17. Stenger MB, Stuart MC, Lee D. The Heart of the Matter: Avoiding Cardiovascular Dysfunction.
https://www.nasa.gov/content/cardiovascular-health
March 31, 2015, Last Updated: Aug. 7, 2017. National Aeronautics and Space Administration.
18. Carl JA. Incidence Rate of Cardiovascular Disease End Points in the National Aeronautics and Space Administration Astronaut Corps. J Am Heart Assoc. 2017 Aug; 6(8): e005564. J Am Heart Assoc. 2017 Aug; 6(8): e005564. Published online 2017 Aug 7. Doi: [10.1161/ JAHA.117.005564]
19. Elgart SR. Radiation Exposure and Mortality from Cardiovascular Disease and Cancer in Early NASA Astronauts: Space for Exploration. 20170009911, Aerospace Medicine, JSC-CN-40709. NASA; Washington, DC, United States. NASA Human Research Program Investigators’ Workshop; 22-25 Jan. 2018; Galveston, TX; United States.
20. Zarana P. Evidence Report: Risk of Cardiovascular Disease and Other Degenerative Tissue Effects from Radiation Exposure. National Aeronautics and Space Administration Lyndon B. Johnson Space Center Houston, Texas.
21. Anderson RE, Key CR, Yamamoto T, Thorslund T. Aging in Hiroshima and Nagasaki atomic bomb survivors. Speculations based upon the age-specific mortality of persons with malignant neoplasms. Am J Pathol. 1974; 75: 1–11.
22. Lee SMC. Metabolomic and Genomic Markers of Atherosclerosis as Related to Oxidative Stress, Inflammation, and Vascular Function in Twin Astronauts. Jan 23, 2017. 20160013632. Aerospace Medicine. JSC-CN-37998. NASA; Washington, DC, United States.
23. Hughson RL. Recent findings in cardiovascular physiology with space travel. Resp Physiol Neurobiol. 2009; 169: 38-41.
24. Stein TP. Weigth, muscle and bone loss during space flight: another perspective. Eur J Appl Physiol. 2013: 2171-81.
25. Pietsch J, Bauer J, Egli M, Infanger M, Wise P, Ulbrich C, et al. The effects of weightlessness on human organism and mammalian cells. Curr Mol Med. 2011; 11: 350-64.
26. Stewart LH, Trunkey D, Rebagliatti SG. Emergency medicine in space. J Emerg Med. 2007; 32: 45-54.
27. Liakopoulos U, Leivaditis K, Eleftheriadis T, Dombros N. The kidney in space. Int Urol Nephrol. 2012; 44: 1893901.
28. Stuster J. CPE. Behavioral Issues Associated With Long Duration Space Expeditions: Review and Analysis of Astronaut Journals Experiment 01-E104 (Journals) Phase 2 Final Report. National Aeronautics and Space Administration; Johnson Space Center Houston, Texas 77058, NASA/TM-2016-218603.
29. Vipan K. Parihar; Cosmic radiation exposure and persistent cognitive dysfunction. Scientific Reports volume6, Article number: 34774. 2016.
30. APA. Diagnostic and statistical manual of mental disorders. 4th Ed. (text rev.). Washington, D.C. 2000.
31. Antonovsky A. Health, stress, and coping: new perspectives on mental and physical well-being. Jossey- Bass, San Francisco, Calif. (1979).
32. Jancy CM. Human Health and Performance Risks of Space Exploration Missions, Evidence reviewed by the NASA Human Research Program. NASA SP-20093405. Lyndon B. Johnson Space Center; Houston, Texas 77058
33. Bailey DA, Gilleran LG, Merchant PG. Waivers for disqualifying medical conditions in U.S. Naval aviation personnel. Aviat. Space Environ. Med. 1995; 66: 401–407.
34. Review of the NASA Astronaut; NASA Astronaut Health Care System Review Committee February – June 2007 Report to the Administrator.
35. Review of the NASA Astronaut, Memo from the NASA Administrator to the Chief Health and Medical Officer; 7 Feb 2007.
36. Review of the NASA Astronaut, Johnson Space Center Astronaut and Flight Surgeon Survey Report; January 2008.
37. Thomas W. Evidence: Risk of Adverse Cognitive or Behavioral Conditions and Psychiatric Disorders; Report- Human Factors and Behavioral Performance (HFBP), BMed Last Published: 07/31/18 09:30:03 AM (Central).
38. Mao XW, Nishiyama NC, Pecaut MJ, Campbell-Beachler M, Gifford P, Haynes KE, Gridley DS. Simulated Microgravity and Low-Dose/Low-Dose-Rate Radiation Induces Oxidative Damage in the Mouse Brain. Radiation Research. 2016; 185(6): 647-57. https://doi.org/10.1667/RR14267.1
39. Britten R, Jewell JS, Duncan VD, Hadley MM, Macadat E, Musto A, & La Tessa C. Impaired Attentional Set-Shifting Performance after Exposure to 5 cGy of 600 MeV/n 28 Si Particles. Radiation Research. 2018; 189(3): 273282. https://doi.org/10.1667/RR14627.1
40. Cassady K, Koppelmans V, Reuter-Lorenz P, De Dios Y, Gadd N, Wood S, Seidler R. Effects of a spaceflight analog environment on brain connectivity and behavior. NeuroImage. 2016; 141: 18-30. https://doi.org/10.1016/j.neuroimage.2016.07.029
41. Clewett DV, Lee TH, Greening S, Ponzio A, Margalit E, & Mather M. Neuromelanin marks the spot: identifying a locus coeruleus biomarker of cognitive reserve in healthy aging. Neurobiology of Aging. 2016; 37: 117–126.
http://doi.org/10.1016/j.neurobiolaging.2015.09.019.
42. Demertzi A, Van Ombergen A, Tomilovskaya E, Jeurissen B, Pechenkova E, Di Perri C, Wuyts FL. Cortical reorganization in an astronaut’s brain after long-duration spaceflight. Brain Structure and Function. 2016; 221: 2873–2876.
http://doi.org/10.1007/s00429-015-1054-3
43. Muldoon SF, Pasqualetti F, Gu S, Cieslak M, Grafton ST, Vettel JM, & Bassett DS. Stimulation-Based Control of Dynamic Brain Networks. PLoS Computational Biology. 2016; 12(9). e1005076. http://doi.org/10.1371/journal.pcbi.1005076
44. NASA CNS Risk Evidence Report: Risk of Acute and Late Central Nervous System Effects from Radiation Exposure (2016). Retrieved from https://humanresearchroadmap.nasa.gov/evidence/reports/cns.pdf
45. Pani G, Samari N, Quintens R, de Saint-Georges L, Meloni M, Baatout S, Benotmane MA. Morphological and Physiological Changes in Mature In Vitro Neuronal Networks towards Exposure to Short-, Middle- or LongTerm Simulated Microgravity. PLoS ONE. 2013; 8(9). e73857. http://doi.org/10.1371/journal.pone.0073857
46. Zwart SR, Launius RD, Coen GK, Morgan JLL, Charles JB, Smith SM. Body mass changes during long duration spaceflight. Aviat Space Environ Med. 2014; 85: 897904.
47. Smith SM, Zwart SR. Nutritional biochemistry of spaceflight. Adv Clin Chem. 2008; 46: 87-130. 2.
48. Smith SM, Zwart SR, Kloeris V, Heer M. Nutritional biochemistry of space flight. New York: Nova Science Publishers; 2009.
49. Estrategia y Visión de la Labor de la FAO en Materia de Nutrición. Papel de la FAO en la nutrición. Rome, 2014. Sitio web de la Organización (www.fao.org/publications).
50. Carrillo R. Medicina espacial. 1ª ed. México: Academia Nacional de Medicina De México (ANMM); 2016. ISBN 978-607-443-624-2.
51. Conference on Nutrition in Space and Related Waste Problems. University Of South Florida. Tampa, Florida April 27-30, 1964. NASA SP-70.
52. Bourland CT, Smith MC. Selection of human consumables for future space missions. Waste Manage Res, 1991; 9: 339–44.
53. Carl JA. Incidence Rate of Cardiovascular Disease End Points in the National Aeronautics and Space Administration Astronaut Corps. J Am Heart Assoc. 2017 Aug; 6 (8): e005564. Published online 2017 Aug 7. Doi: [10.1161/ JAHA.117.005564]
54. Lang TA, LeBlanc H, Evans Y, Lu H, Genant A. Cortical and trabecular bone mineral loss from the spine and hip in long-duration spaceflight, J. Bone Min. Res. 19 (2004) 1006–1012.
55. Lambertz D, Perot C, Kaspranski R, Goubel F. Effects of longterm spaceflight on mechanical properties of muscles in humans. J Appl Physiol. 2001; 90:179–88.
56. NASA. Postflight Rehabilitation Plan. Document JSC 27050. Johnson Space Center, NASA, 1997.
57. Payne MWC, Williams DR, Trudel G. Review: spaceflight rehabilitation. Am J Phys Med Rehabil. 2007; 86: 583–91.
58. Reeves ND, Maganaris CN, Ferretti G, Narici MV. Influence of 90-day simulated microgravity on human tendon mechanical properties and the effect of resistive countermeasures. J Appl Physiol. 2005; 98: 2278–86.
59. Tesch PA, Trieschmann JT, Ekberg A. Hypertrophy of chronically unloaded muscle subjected to resistance exercise. J Appl Physiol. 2004; 96: 1451–8.
60. Pennline J. The Digital Astronaut Project Computational Bone Remodeling Model (Beta Version) Bone Summit Summary Report, Sep 23, 2013; 20140003236; JSCCN-29755, Aerospace Medicine.
61. Buckley JC, Jr. Space Physiology, Oxford University Press, New York, 2006.
62. Layne CS, Forth KE. Plantar stimulation as a possible countermeasure to microgravity-induced neuromotor degradation. Aviation Space and Environmental Medicine. 2008; 79: 787–794.
63. LeBlanc A, Matsumoto T, Jones J, Shapiro T, Lang L, Shackelford et al. Bisphosphonates as a supplement to exercise to protect bone during long-duration spaceflight., Osteoporosis International : a Journal Established as Result of Cooperation Between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. (2013).
64. Badhwar GD. (1997) Spaceflight validation of material shielding properties. In: Wilson JW, Miller J, Konradi A, Cucinotta FA (Eds.), NASA workshop on shielding strategies for human space exploration. NASA-CP-1997- 3360. NASA Johnson Space Center, Houston.
65. Badhwar GD, Cucinotta FA. A comparison of depth dependence of dose and linear energy transfer spectra in aluminum and polyethylene. Radiat. Res. 2000; 153: 1–8.
66. Barcellos-Hoff MH, Park C, Wright EG. Radiation and the microenvironment – tumorigenesis and therapy. Nat. Rev. Canc. 2005; 5: 867–875.
67. Beir. Committee to Assess Health Risks from Exposure to Low Levels of Ionizing Radiation. National Research Council of the National Academies. (2006) Health risks from exposure to low levels of ionizing radiation: BEIR VII – Phase 2. The National Academies Press, Washington, D.C.
68. Billings MP, Yucker WR, Heckman BR. (1973) Body selfshielding data analysis. MDC-G4131. McDonnell- Douglas Astronautics Company West.
69. Bingham S, Riboli E. Diet and cancer—the European prospective investigation into cancer and nutrition. Nat. Rev. Canc. 2004; 4: 206–215.
70. Bunger BM, Cook JR, Barrick MK. Life table methodology for evaluating radiation risk: an application based on occupational exposures. Health Phys. 1981; 40: 439–455.
71. Burns FJ, Jin Y, Koenig KL, Hosselet S. The low carcinogenicity of electron radiation relative to argon ions in rat skin. Radiat. Res. 1993; 135: 178–188.
72. Burns F, Yin Y, Garte SJ, Hosselet S. Estimation of risk based on multiple events in radiation carcinogenesis of rat skin. Adv. Space Res. 1994; 14: 507–519.
73. Ochola DO. Persistence of Gamma-H2AX Foci in Irradiated Bronchial Cells Correlates with Susceptibility to Radiation Associated. Aerospace Medicine. NASA Ames Research Center; Moffett Field, CA, United States. ARC-E-DAA-TN53304/SUPPL. Jan 01, 2018. 20180001965.
74. NASA. Managing Space Radiation Risk in the New Era of Space Exploration; Jan 01, 2008; Space Radiation; NASA; Washington, DC, United States. 20080016495.
75. Burns FJ, et al. Induction and prevention of carcinogenesis in rat skin exposed to space radiation. Radiat. Environ. Biophys. 2007; 46: 195–199.
76. Ordóñez A. Efectos de las radiaciones ionizantes sobre los seres vivos. Febrero, 2016. Universidad De Jaén; Facultad de Ciencias Experimentales.
77. Gil JM. Radiobiología para profesionales sanitarios: radiosensibilidad vs radioresistencia. Respuestas bioquímica, celular y tisular. Madrid, España: MAD; 2010.
78. Vipan KP. Cosmic radiation exposure and persistent cognitive dysfunction. Scientific Reports volumen 6, Article number: 34774 (2016). Published: 10 October 2016.
79. Locke PA, Weil MM. Personalized cancer risk assessments for space radiation exposures. Front Oncol. 2016; 6:38.
80. Mohammad A, Ahad S, Durand SD. Saliva as a diagnostic tool for oral and systemic diseases. Journal of Oral Biology and Craniofacial Research. 2016 Enero-Abril; 6 (1): 67-76.
81. Belstrøm D, Holmstrup P, Bardow A, Kokaras A, Fiehn NE, Paster B. Temporal stability of the salivary microbiota in oral health. Plos ONE. 2016; 11(1).
82. Balwant R, Jasdeep K, Bernard H F. Evaluation by an aeronautic dentist on the adverse effects of a six-week period of microgravity on the oral cavity. International Journal of Dentistry. 2011.
83. DiPrampero PE, Narici MV. Muscles in microgravity: From fibres to human motion. J Biomech. 2003; 36: 403–12.
84. Hammer L. Aeronautical Systems Division studies in weight-lessness: 1959-1960. Wright-Patterson Air Force Base, OH: Aeronautical Systems Division, Air ForceSystems Command, United States Air Force; 1961. Wadd Technical Report 60-715.
85. Space Studies Board: National Research Council. A Strategy for Research in Space Biology and Medicine in the New Century. Washington, DC: National Academy Press; 1998.

Cómo citar

[1]
Muñoz Gallego, F. de M. et al. 2019. RIESGOS DE SER UN ASTRONAUTA: HÉROES DEL ESPACIO. Medicina. 41, 1 (abr. 2019), 47–62.

Descargas

Los datos de descargas todavía no están disponibles.

Descargas

Publicado

2019-04-01

Número

Sección

Artículos de Revisión