HISTORIA DEL TRATAMIENTO DE LAS NEOPLASIAS HEMATOLINFOIDES DESDE LA QUIMIOTERAPIA AL TRASPLANTE Y TERAPIA CELULAR

  • Beatriz Wills Sanín Memorial Sloan Kettering Cancer Center, New York
  • Alexandra Gómez Arteaga New York-Presbyterian Hospital, Ciudad de Nueva York
Palabras clave: Historia de la quimioterapia, trasplante de células madre hematopoyéticas, terapia celular, CAR- T

Resumen

Algunos de los avances más importantes en el campo de la hematología maligna incluyen el desarrollo de la quimioterapia, el trasplante de médula ósea y la introducción de la terapia celular. En conjunto, estas terapias han mejorado significativamente el pronóstico de pacientes con enfermedades hematolinfoides. Inicialmente el trasplante de células madre hematopoyéticas (TCMH) fue recibido con una mezcla de escepticismo, entusiasmo y decepciones. Inicialmente fue necesario superar distintas barreras, incluyendo las diferencias inherentes entre la inmunología de animales y humanos, el rechazo del injerto y la enfermedad de injerto contra huésped (EICH). Los desenlaces médicos y las altas tasas de mortalidad por recaída en los primeros trasplantes frenaron, en primera instancia, la investigación del TCMH. Sin embargo, gracias a la determinación de diferentes pioneros, el TCMH pasó de ser una opción experimental con disponibilidad limitada a ser una terapia que hoy en día beneficia aproximadamente 50.000 pacientes anualmente con distintos desórdenes hematológicos que de otro modo serían fatales. En la actualidad el TCMH tiene una variedad de aplicaciones médicas más allá de las neoplasias hematológicas, incluyendo síndromes de falla medular, tratamiento de tumores sólidos, hemoglobinopatías, enfermedades autoinmunes, trastornos hereditarios del metabolismo e incluso enfermedades infecciosas como el virus de inmunodeficiencia humano (VIH)(1). Además la terapia celular, específicamente las células T con receptores de antígeno quimérico (CAR- T) es uno de los avances más importantes del tratamiento de las enfermedades neoplásicas hematológica. Este artículo revisará la perspectiva histórica del tratamiento de las neoplasias hematolinfoides desde la quimioterapia, TCMH y la terapia celular.

Biografía del autor

Beatriz Wills Sanín, Memorial Sloan Kettering Cancer Center, New York
MD. Fellow en Hematología y Oncología. Memorial Sloan Kettering Cancer Center, División de Hematología y Oncología, Ciudad de Nueva York, Nueva York.
Alexandra Gómez Arteaga, New York-Presbyterian Hospital, Ciudad de Nueva York
MD. Profesor Asistente. División de Hematología y Oncología Weill Cornell Medicine, New York-Presbyterian Hospital, Ciudad de Nueva York, Nueva York.

Citas

1. Hütter G, Nowak D, Mossner M, Ganepola S, Müssig A, Allers K et al. Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N Engl J Med. 2009;360(7):692-8.
2. Bennett JH. Case of hypertrophy of the spleen and liver in which death took place from suppuration of the blood. Edinb Med Surg J. 1845;64,:413±23.
3. Virchow R. Weisses Blut und Milztumoren. Medicale Zeitung. 1847;16.
4. Thorburn AL. Paul Ehrlich: pioneer of chemotherapy and cure by arsenic (1854-1915). Br J Vener Dis. 1983;59(6):404-5.
5. Goodman LS, Wintrobe MM et al. Nitrogen mustard therapy; use of methyl-bis (beta-chloroethyl) amine hydrochloride and tris (beta-chloroethyl) amine hydrochloride for Hodgkin's disease, lymphosarcoma, leukemia and certain allied and miscellaneous disorders. J Am Med Assoc. 1946;132:126-32.
6. Farber S, Diamond LK. Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroyl-glutamic acid. N Engl J Med. 1948;238(23):787-93.
7. Pui CH, Evans WE. A 50-year journey to cure childhood acute lymphoblastic leukemia. Semin Hematol. 2013;50(3):185-96.
8. Freireich EJ, Gehan E, Frei E, Iii, Schroeder LR, Wolman IJ, Anbari R et al. The Effect of 6-Mercaptopurine on the Duration of Steroid-induced Remissions in Acute Leukemia: A Model for Evaluation of Other Potentially Useful Therapy. Blood. 1963;21(6):699-716.
9. Frei 3rd E, Karon M, Levin RH, Freireich EJ, Taylor RJ, Hananian J et al. The effectiveness of combinations of antileukemic agents in inducing and maintaining remission in children with acute leukemia. Blood. 1965;26(5):642-56.
10. Rodriguez V, Hart JS, Freireich EJ, Bodey GP, McCredie KB, Whitecar JR. JP et al. POMP combination chemotherapy of adult acute leukemia. Cancer. 1973;32(1):69-75.
11. Piller GJ. Leukaemia – a brief historical review from ancient times to 1950. Br J Haematol. 2001;112(2):282-92.
12. Smith MA, Altekruse SF, Adamson PC, Reaman GH, Seibel NL. Declining childhood and adolescent cancer mortality. Cancer. 2014;120(16):2497-506.
13. Hillestad LK. Acute Promyelocytc Leukemia. Acta Med Scand. 1957;159(3):189-94.
14. Breitman T, Collins S, Keene B. Terminal differentiation of human promyelocytic leukemic cells in primary culture in response to retinoic acid. Blood. 1981;57(6):1000-4.
15. Degos L, Wang ZY. All trans retinoic acid in acute promyelocytic leukemia. Oncogene. 2001;20(49):7140-5.
16. Antman KH. Introduction: the history of arsenic trioxide in cancer therapy. Oncologist. 2001;6 Suppl 2:1-2.
17. Bruserud O, Gjertsen BT, Huang T. Induction of differentiation and apoptosis- a possible strategy in the treatment of adult acute myelogenous leukemia. Oncologist. 2000;5(6):454-62.
18. Wang Z, Sun G, Shen Z, Chen S, Chen Z. Differentiation therapy for acute promyelocytic leukemia with all-trans retinoic acid: 10-year experience of its clinical application. Chin Med J (Engl). 1999;112(11):963-7.
19. Nowell PC. The minute chromosome (Phl) in chronic granulocytic leukemia. Blut. 1962;8:65-6.
20. Wong S, Witte ON. The BCR-ABL story: bench to bedside and back. Annu Rev Immunol. 2004;22:247-306.
21. Goldman JM. Chronic myeloid leukemia: a historical perspective. Semin Hematol. 2010;47(4):302-11.
22. McNicholl F. a history of haematology. from herodotus to hiv (oxford medical histories). Ulster Med J. 2017;86(1):50.
23. Konopka JB, Watanabe SM, Witte ON. An alteration of the human c-abl protein in K562 leukemia cells unmasks associated tyrosine kinase activity. Cell. 1984;37(3):1035-42.
24. Lichtman MA. A historical perspective on the development of the cytarabine (7days) and daunorubicin (3days) treatment regimen for acute myelogenous leukemia: 2013 the 40th anniversary of 7+3. Blood Cells Mol Dis. 2013;50(2):119-30.
25. Evans JS, Musser EA, Bostwick L, Mengel GD. The Effect of 1-β-D-Arabinofuranosylcytosine Hydrochloride on Murine Neoplasms. Cancer Res. 1964;24(7):1285- 93.
26. Schabel FM, Johnston TP, McCaleb GS, Montgomery JA, Laster WR, Skipper HE. Experimental Evaluation of Potential Anticancer Agents. VIII Effects of Certain Nitrosoureas on Intracerebral L1210 Leukemia. 1963;23(5):725-33.
27. Freireich EJ, Wiernik PH, Steensma DP. The Leukemias: A Half-Century of Discovery. J Clin Oncol. 2014;32(31):3463-9.
28. Carey RW, Ribas-Mundo M, Ellison RR, Glidewell O, Lee ST, Cuttner J et al. Comparative study of cytosine arabinoside therapy alone and combined with thioguanine, mercaptopurine, or daunorubicin in acute myelocytic leukemia. Cancer. 1975;36(5):1560-6.
29. Yates JW, Wallace HJ, Jr., Ellison RR, Holland JF. Cytosine arabinoside (NSC-63878) and daunorubicin (NSC83142) therapy in acute nonlymphocytic leukemia. Cancer Chemother Rep. 1973;57(4):485-8.
30. Winer ES, Stone RM. Novel therapy in Acute myeloid leukemia (AML): moving toward targeted approaches. Ther Adv Hematol. 2019;10:2040620719860645.
31. Hodgkin. On some Morbid Appearances of the Absorbent Glands and Spleen. Med Chir Trans. 1832;17:68-114.
32. Bonadonna G, Zucali R, Monfardini S, De Lena M, Uslenghi C. Combination chemotherapy of Hodgkin's disease with adriamycin, bleomycin, vinblastine, and imidazole carboxamide vs. MOPP. Cancer. 1975;36(1):252-9.
33. Bonadonna G. Chemotherapy strategies to improve the control of Hodgkin's disease: the Richard and Hinda Rosenthal Foundation Award Lecture. Cancer Res. 1982;42(11):4309-20.
34. Diehl V, Franklin J, Pfreundschuh M, Lathan B, Paulus U, Hasenclever D et al. Standard and Increased-Dose BEACOPP Chemotherapy Compared with COPP-ABVD for Advanced Hodgkin's Disease. New England Journal of Medicine. 2003;348(24):2386-95.
35. Roullet MR, Bagg A. Recent insights into the biology of Hodgkin lymphoma: unraveling the mysteries of the Reed-Sternberg cell. Expert Rev Mol Diagn. 2007;7(6):805- 20.
36. Johnson P, Federico M, Kirkwood A, Fosså A, Berkahn L, Carella A et al. Adapted Treatment Guided by Interim PET-CT Scan in Advanced Hodgkin's Lymphoma. N Engl J Med. 2016;374(25):2419-29.
37. Smith LH. Radiation Chimaeras.D. W. van Bekkum and M. J. de Vries. Academic Press, New York, 1967.x + 277 pp., illus. $20. Science. 1968;159(3812):294-5.
38. de la Morena MT, Gatti RA. A history of bone marrow transplantation. Immunol Allergy Clin North Am. 2010;30(1):1-15.
39. Thomas ED, Storb R, Clift RA, Fefer A, Johnson L, Neiman PE et al. Bone-marrow transplantation (second of two parts). N Engl J Med. 1975;292(17):895-902.
40. Mathé G, Amiel JL, Schwarzenberg L, Cattan A, Schneider M. Adoptive immunotherapy of acute leukemia: experimental and clinical results. Cancer Res. 1965;25(9):1525-31.
41. Bortin MM. A compendium of reported human bone marrow transplants. Transplantation. 1970;9(6):571-87.
42. Snell GD, Stevens LC. Histocompatibility genes of mice. III. H-1 and H-4, two histocompatibility loci in the first linkage group. Immunology. 1961;4(4):366-79.
43. Billingham RE, Brent L, Medawar PB. ‘Actively Acquired Tolerance’ of Foreign Cells. Nature. 1953;172(4379):603- 6.
44. Santos GW, Tutschka PJ, Brookmeyer R, Saral R, Beschorner WE, Bias WB et al. Marrow Transplantation for Acute Nonlymphocytic Leukemia after Treatment with Busulfan and Cyclophosphamide. N Engl J Med. 1983;309(22):1347-53.
45. Buckley RH. A historical review of bone marrow transplantation for immunodeficiencies. J Allergy Clin Immunol. 2004;113(4):793-800.
46. Epstein RB, Storb R, Ragde H, Thomas ED. Cytotoxic typing antisera for marrow grafting in littermate dogs. Transplantation. 1968;6(1):45-58.
47. Dausset J. [Presence of A & B antigens in leukocytes disclosed by agglutination tests]. C R Seances Soc Biol Fil. 1954;148(19-20):1607-8.
48. Ceppellini R, van Rood JJ. The HL-A system. I. Genetics and molecular biology. Semin Hematol. 1974;11(3):233- 51.
49. Aljurf M, Weisdorf D, Alfraih F, Szer J, Müller C, Confer D et al. “Worldwide Network for Blood & Marrow Transplantation (WBMT) special article, challenges facing emerging alternate donor registries”. Bone Marrow Transplant. 2019;54(8):1179-88.
50. Gluckman E, Rocha V, Boyer-Chammard A, Locatelli F, Arcese W, Pasquini R et al. Outcome of cord-blood transplantation from related and unrelated donors. Eurocord Transplant Group and the European Blood and Marrow Transplantation Group. N Engl J Med. 1997;337(6):373- 81.
51. de Witte T, Hoogenhout J, de Pauw B, Holdrinet R, Janssen J, Wessels J et al. Depletion of donor lymphocytes by counterflow centrifugation successfully prevents acute graft-vs.-host disease in matched allogeneic marrow transplantation. Blood. 1986;67(5):1302-8.
52. Daniele N, Scerpa MC, Caniglia M, Ciammetti C, Rossi C, Bernardo ME, et al. Overview of T-cell depletion in haploidentical stem cell transplantation. Blood Transfus. 2012;10(3):264-72.
53. Krause DS, Fackler MJ, Civin CI, May WS. CD34: structure, biology, and clinical utility. Blood. 1996;87(1):1-13.
54. Kessinger A. Utilization of Peripheral Blood Stem Cells in Autotransplantation. Hematol Oncol Clin North Am. 1993;7(3):535-45.
55. Weiden PL, Flournoy N, Thomas ED, Prentice R, Fefer A, Buckner CD et al. Antileukemic effect of graft-vs.-host disease in human recipients of allogeneic-marrow grafts. N Engl J Med. 1979;300(19):1068-73.
56. Kolb HJ, Mittermüller J, Clemm C, Holler E, Ledderose G, Brehm G et al. Donor leukocyte transfusions for treatment of recurrent chronic myelogenous leukemia in marrow transplant patients. Blood. 1990;76(12):2462-5.
57. Gatti RA, Meuwissen HJ, Allen HD, Hong R, Good RA. Immunological reconstitution of sex-linked lymphopenic immunological deficiency. Lancet. 1968;2(7583):1366-9.
58. Bach FH, Albertini RJ, Joo P, Anderson JL, Bortin MM. Bone-marrow transplantation in a patient with the Wiskott-Aldrich syndrome. Lancet. 1968;2(7583):1364-6.
59. Santos GW. Preparative regimens: chemotherapy vs. chemoradiotherapy. A historical perspective. Ann N Y Acad Sci. 1995;770:1-7.
60. Miller JF. Immunological function of the thymus. Lancet. 1961;2(7205):748-9.
61. Rosenberg SA, Spiess P, Lafreniere R. A new approach to the adoptive immunotherapy of cancer with tumorinfiltrating lymphocytes. Science. 1986;233(4770):1318- 21.
62. Eshhar Z, Waks T, Gross G, Schindler DG. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc Natl Acad Sci U S A. 1993;90(2):720-4.
63. Levine BL, Cotte J, Small CC, Carroll RG, Riley JL, Bernstein WB, et al. Large-scale production of CD4+ T cells from HIV-1-infected donors after CD3/CD28 costimulation. J Hematother. 1998;7(5):437-48.
64. Krause A, Guo HF, Latouche JB, Tan C, Cheung NK, Sadelain M. Antigen-dependent CD28 signaling selectively enhances survival and proliferation in genetically modified activated human primary T lymphocytes. J Exp Med. 1998;188(4):619-26.
65. Maus MV, Thomas AK, Leonard DG, Allman D, Addya K, Schlienger K, et al. Ex vivo expansion of polyclonal and antigen-specific cytotoxic T lymphocytes by artificial APCs expressing ligands for the T-cell receptor, CD28 and 4-1BB. Nat Biotechnol. 2002;20(2):143-8.
66. Brentjens RJ, Latouche JB, Santos E, Marti F, Gong MC, Lyddane C, et al. Eradication of systemic B-cell tumors by genetically targeted human T lymphocytes co-stimulated by CD80 and interleukin-15. Nat Med. 2003;9(3):279-86.
67. Hollyman D, Stefanski J, Przybylowski M, Bartido S, Borquez-Ojeda O, Taylor C, et al. Manufacturing validation of biologically functional T cells targeted to CD19 antigen for autologous adoptive cell therapy. J Immunother. 2009;32(2):169-80.
68. Porter DL, Levine BL, Kalos M, Bagg A, June CH. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med. 2011;365(8):725-33.
69. Kalos M, Levine BL, Porter DL, Katz S, Grupp SA, Bagg A, et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med. 2011;3(95):95ra73.
70. Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR, et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med. 2013;368(16):1509-18.
71. Brentjens RJ, Davila ML, Riviere I, Park J, Wang X, Cowell LG, et al. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med. 2013;5(177):177ra38.
72. Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M, Bittencourt H, et al. Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia. N Engl J Med. 2018;378(5):439-48.
73. Neelapu SS, Tummala S, Kebriaei P, Wierda W, Gutierrez C, Locke FL, et al. Chimeric antigen receptor T-cell therapy - assessment and management of toxicities. Nat Rev Clin Oncol. 2018;15(1):47-62.
Publicado
2021-04-20
Sección
Perspectiva del diagnóstico y Tratamiento del Cancer