ESTUDIO DE VARIANTES MOLECULARES DE LOS GENES PTPN22, TNF Y VDR EN MADRES DE NIÑOS CON NEFRITIS LÚPICA Y SU ASOCIACIÓN COMO FACTORES DE RIESGO

  • Gloria Garavito de Egea Universidad del Norte
  • Eduardo A. Egea Bermejo Universidad del Norte
  • Clara Malagón Universidad del Bosque
  • Luis Fang Mercado Universidad del Cartagena
  • Carlos Olmos Universidad del Rosario
  • Luz González Universidad del Bosque
  • Pilar Guarnizo
  • Fernando R. De la Cruz López Universidad del Norte
  • Gustavo Aroca Universidad Simón Bolívar
  • Guillermo López Lluch Universidad Pablo de Olavide. España
  • Antonio Iglesias Universidad Nacional
Palabras clave: Lupus eritematoso sistémico, Nefritis Lúpica, Epigenética, Impronta genómica, Modelos Genéticos, Systemic Lupus Erythematosus, Lupus Nephritis, Epigenetic Genomic Imprinting, Genetic Models

Resumen

La Nefritis Lúpica (NL) es más frecuente en mujeres. Se reconoce que madres con Lupus Eritematoso Sistémico (LES) confieren mayor riesgo al desarrollo de esta entidad en sus hijos. Esta transmisión se debe a la impronta genómica y/o al genotipo materno sobre el desarrollo prenatal. En este estudio se identificaron variantes de los sistemas PTPN22, VDR y TNF, asociadas a NL pediátrica (NLp). Se investigó la asociación de marcadores en 64 familias: 46 tríos (Caso/Padre- Madre) y 18 dúos (Caso/Madre). Se genotipificaron los SNPs rs2476601 [A/G] de PTPN22; rs361525 [A/G] y rs1800629 [A/G] de TNF; TaqI [rs731236 A/G], ApaI [rs7975232 A/C], BsmI [rs1544410 C/T] y FokI [rs2228570 A/G] de VDR mediante RT-PCR. Se estimó el efecto de la sobretransmisión del alelo de riesgo de padres a hijos. Se estimó el efecto genético de los SNPs sobre los niños (R1 y R2) y también se estudiaron la influencia genética materna (S1 y S2) y la impronta materna (Im). Se observó que el alelo A de rs2476601 en PTPN22 es sobretransmitido (p=0,028) en los niños con nefritis lúpica y se demostró que los niños portadores de una copia del alelo A de rs2476601 presentan un riesgo (R1) de 0,20, mientras que dos copias del alelo (R2) lo incrementan a 1,71. Además, si la madre es portadora de dos copias del alelo A (S2), el riesgo aumenta a 2,5. La impronta genética fue de 0,97 (p=0,002). Nuestro estudio describe la influencia materna de las variantes de PTPN22, TNF y VDR sobre niños con NLp en familias colombianas.MATERNAL GENETIC VARIANTS IN PTPN22, TNF AND VDR AND THE RISK OF PEDIATRIC LUPUS NEPHRITISABSTRACTLupus nephritis (LN) is more common in women. It is recognized that mothers with SLE confer increased risk to develop this entity to their children. This transmission is due the genomic imprint and/or maternal genotype on prenatal development. In this study, variants of PTPN22, TNF and VDR genes were identified and associated with pediatric LN (PLN). The association of markers was investigated in 64 families: 46 trios (case/Father-Mother) and 18 duos (case/ Mother). The SNPs rs2476601 [A/G] of PTPN22; the rs361525 [A/G], rs1800629 [A/G] from TNF and TaqI [rs731236 A/G], ApaI [rs7975232 A/C], BsmI [rs1544410 C/T] and FokI [rs2228570 A/G] of VDR gene were genotyped by RT-PCR. The effect of over-risk allele transmission from parents to children was estimated. The genetic effect of the SNPs on children (R1 and R2) was estimated and maternal genetic influence (S1 and S2) and maternal imprinting (Im). It was observed that the A allele of rs2476601 in PTPN22 is over-transmitted (p = 0,028) to PLN children, and that children carrying one copy of the allele of rs2476601 have a (R1) risk of 0,20; while two copies of allele (R2) increase it to 1,71. Also, if the mother carries two co- pies of allele A (S2), the risk become 2,5. DNA fingerprinting was 0,97 (p = 0,002). Our study describes maternal influence of the variants of PTPN22, TNF and VDR genes on children with PLN in colombian families. 

Biografía del autor

Gloria Garavito de Egea, Universidad del Norte
MD-Ph.D, Universidad del Norte, División Ciencias De la Salud, Grupo de Investigación en inmunología y Biología Molecular, Barranquilla-Colombia.
Eduardo A. Egea Bermejo, Universidad del Norte
MD-Ph.D, Universidad del Norte, División Ciencias De la Salud, Grupo de Investigación en inmunología y Biología Molecular, Barranquilla-Colombia.
Clara Malagón, Universidad del Bosque
MD-Especialista, Universidad del Bosque, Ciencias de la Salud, Bogotá-Colombia.
Luis Fang Mercado, Universidad del Cartagena
MSc, Corporación Universitaria Rafael Núñez. Universidad de Cartagena. Cartagena-Colombia.
Carlos Olmos, Universidad del Rosario
MD-Especialista, Universidad del Rosario, Ciencias de la Salud, Bogotá –Colombia
Luz González, Universidad del Bosque
MD-Especialista, Universidad del Bosque, Ciencias de la Salud, Bogotá-Colombia
Pilar Guarnizo
MD-Especialista, Universidad del Rosario, Ciencias de la Salud, Bogotá –Colombia. 
Fernando R. De la Cruz López, Universidad del Norte
B.Sc(C), Universidad del Norte, División Ciencias de la Salud, Grupo de Investigación en inmunología y Biología Molecular, Barranquilla-Colombia.
Gustavo Aroca, Universidad Simón Bolívar
MD-Especialista, Universidad Simón Bolívar, Ciencias de la Salud, Grupo de Investigación Nefrología, Barranquilla-Colombia.
Guillermo López Lluch, Universidad Pablo de Olavide. España
B.Sc-Ph.D, Universidad Pablo de Olavide. Departamento de Fisiología, Anatomía y Biología Celular, Sevilla-España.
Antonio Iglesias, Universidad Nacional
MD-Especialista, Universidad Nacional, Ciencias de la Salud, Grupo Unidad de Reumatología, Bogotá –Colombia.

Citas

1. Mohan C, Putterman C. Genetics and pathogenesis of systemic lupus erythematosus and lupus nephritis. Nature reviews Nephrology. 2015.
2. Bonanni A, Vaglio A, Bruschi M, Sinico RA, Cavagna L, Moroni G, et al. Multi-antibody composition in lupus nephritis: Isotype and antigen specificity make the difference. Autoimmunity reviews. 2015.
3. Pan XF, Gu JQ, Shan ZY. Patients with systemic lupus erythematosus have higher prevalence of thyroid autoantibodies: a systematic review and meta-analysis. PloS one. 2015;10(4):e0123291.
4. Ceccarelli F, Perricone C, Massaro L, Cipriano E, Alessandri C, Spinelli FR, et al. Assessment of disease activity in Systemic Lupus Erythematosus: Lights and shadows. Autoimmunity reviews. 2015.
5. Makashir SB, Kottyan LC, Weirauch MT. Meta-analysis of differential gene co-expression: application to lupus. Pacific Symposium on Biocomputing Pacific Symposium on Biocomputing. 2015:443-54.
6. Dema B, Charles N. Advances in mechanisms of systemic lupus erythematosus. Discovery medicine. 2014; 17(95):247-55.
7. Kunz M. Lupus erythematosus. Part I: epidemiology, genetics and immunology. Journal der Deutschen Der- matologischen Gesellschaft = Journal of the German Society of Dermatology : JDDG. 2013;11(8):709-19; quiz 20, -20; quiz 21.
8. Sinha R, Raut S. Pediatric lupus nephritis: Manage- ment update. World journal of nephrology. 2014;3 (2):16-23.
9. Rees F, Doherty M, Grainge M, Davenport G, Lanyon P, Zhang W. The incidence and prevalence of systemic lupus erythematosus in the UK, 1999-2012. Annals of the rheumatic diseases. 2014.
10. Ju JH, Yoon SH, Kang KY, Kim IJ, Kwok SK, Park SH, et al. Prevalence of systemic lupus erythematosus in South Korea: an administrative database study. Journal of epidemiology. Japan Epidemiological Association. 2014; 24(4):295-303.
11. Bronson PG, Komorowski LK, Ramsay PP, May SL, Noble J, Lane JA, et al. Analysis of maternal- offspring HLA compatibility, parent-of-origin effects, and noninherited maternal antigen effects for HLA- DRB1 in systemic lupus erythematosus. Arthritis and rheumatism. 2010; 62(6):1712-7.
12. Somers EC, Antonsen S, Pedersen L, Sorensen HT. Parental history of lupus and rheumatoid arthritis and risk in offspring in a nationwide cohort study: does sex matter? Annals of the rheumatic diseases. 2013;
72(4):525-9.
13. Tiffin N, Adeyemo A, Okpechi I. A diverse array of genetic factors contribute to the pathogenesis of ystemic lupus erythematosus. Orphanet journal of rare diseases. 2013;8:2.
14. Deng Y, Tsao BP. Genetic susceptibility to systemic lupus erythematosus in the genomic era. Nature reviews Rheumatology. 2010;6(12):683-92.
15. Lewis CM. Genetic association studies: design, analysis and interpretation. Briefings in bioinformatics. 2002;3(2):146-53.
Campbell H, Rudan I. Interpretation of genetic association studies in complex disease. The pharma- cogenomics journal. 2002;2(6):349-60.
17. Lawson HA, Cheverud JM, Wolf JB. Genomic imprin- ting and parent-of-origin effects on complex traits. Nature reviews Genetics. 2013;14(9):609-17.
18. Patten MM, Ross L, Curley JP, Queller DC, Bonduriansky R, Wolf JB. The evolution of genomic imprinting: theories, predictions and empirical tests. Heredity. 2014;113(2):119-28.
19. Guilmatre A, Sharp AJ. Parent of origin effects. Clinical genetics. 2012;81(3):201-9.
20. Wolf JB, Hager R, Cheverud JM. Genomic imprin- ting effects on complex traits: a phenotype-based perspective. Epigenetics : official journal of the DNA Methylation Society. 2008;3(6):295-9.
21. Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic acids research. 1988;16(3):1215.
22. Howey R, Cordell HJ. PREMIM and EMIM: tools for estimation of maternal, imprinting and interaction effects using multinomial modelling. BMC bioinfor- matics. 2012;13:149.
23. Ainsworth HF, Unwin J, Jamison DL, Cordell HJ. Investigation of maternal effects, maternal-fetal inte- ractions and parent-of-origin effects (imprinting), using mothers and their offspring. Genetic epidemiology. 2011;35(1):19-45.
24. Farid TM, Abd El Baky AM, Khalefa ES, Talaat AA, Mohamed AA, Gheita TA, et al. Association of tumor necrosis factor-alpha gene polymorphisms with ju- venile systemic lupus erythematosus nephritis in a cohort of egyptian patients. Iranian journal of kidney diseases. 2011;5(6):392-7.
25. Mostowska A, Lianeri M, Wudarski M, Olesinska M, Jagodzinski PP. Vitamin D receptor gene BsmI, FokI, ApaI and TaqI polymorphisms and the risk of systemic lupus erythematosus. Molecular biology reports. 2013;40(2):803-10.
26. Sakulpipatsin W, Verasertniyom O, Nantiruj K, To- temchokchyakarn K, Lertsrisatit P, Janwityanujit S. Vitamin D receptor gene BsmI polymorphisms in Thai patients with systemic lupus erythematosus. Arthritis research & therapy. 2006;8(2):R48.
27. Namjou B, Kim-Howard X, Sun C, Adler A, Chung SA, Kaufman KM, et al. PTPN22 association in systemic lupus erythematosus (SLE) with respect to individual ancestry and clinical sub-phenotypes. PloS one. 2013;8(8):e69404.
28. Mandal M, Donnelly R, Elkabes S, Zhang P, Davini D, David BT, et al. Maternal immune stimulation during pregnancy shapes the immunological phenotype of offspring. Brain, behavior, and immunity. 2013;33:33- 45.
29. Zager A, Peron JP, Mennecier G, Rodrigues SC, Aloia TP, Palermo-Neto J. Maternal immune activation in late gestation increases neuroinflammation and aggravates experimental autoimmune encephalomye- litis in the offspring. Brain, behavior, and immunity.
2015;43:159-71.
30. Jaeggi E, Laskin C, Hamilton R, Kingdom J, Silverman E. The importance of the level of maternal anti-Ro/ SSA antibodies as a prognostic marker of the development of cardiac neonatal lupus erythematosus a prospective study of 186 antibody-exposed fetuses and infants. Journal of the American College of Cardiology. 2010;55(24):2778-84.
31. Vinet E, Pineau CA, Clarke AE, Fombonne E, Platt RW, Bernatsky S. Neurodevelopmental disorders in children born to mothers with systemic lupus erythematosus. Lupus. 2014;23(11):1099-104.
32. Picascia A, Grimaldi V, Pignalosa O, De Pascale MR, Schiano C, Napoli C. Epigenetic control of au- toimmune diseases: From bench to bedside. Clinical immunology. 2015;157(1):1-15.
33. Luo S, Liu Y, Liang G, Zhao M, Wu H, Liang Y, et al. The role of microRNA-1246 in the regulation of B cell activation and the pathogenesis of systemic lupus erythematosus. Clinical epigenetics. 2015;7(1):24.
Publicado
2016-07-30
Cómo citar
Sección
Artículos de investigación