Avances en la investigación sobre longevidad: Focos actuales y perspectivas futuras

Autores/as

  • Luis Fernando Cifuentes Monje Academia Nacional de Medicina

DOI:

https://doi.org/10.56050/01205498.2337

Palabras clave:

longevidad, antienvejecimiento, investigación clínica, envejecimiento, esperanza de vida, nuevos medicamentos, vejez, calidad de vida

Resumen

La investigación en longevidad ha identificado numerosos mecanismos y vías relevantes para el envejecimiento que constituyen objetivos legítimos para intervenciones farmacológicas y de estilo de vida. Por ahora, la investigación y toma de decisiones están basadas principalmente en estudios en animales y no se pueden recomendar a gran escala esos nuevos hallazgos para uso en humanos antes de que se haya confirmado su utilidad en ensayos clínicos bien desarrollados. Sin embargo, el interés en la investigación en humanos con el fin de evaluar el impacto en longevidad o en enfermedades asociadas con la edad es cada vez más creciente. Parte de esos avances están reflejados en los siguientes 8 compuestos que tienen soporte preclínico y se están evaluando en humanos: Antiinflamatorios, Espermidina, Metformina, Péptido similar al glucagón-1, Precursores de Nicotinamida Adenina Dinucleótido, Probióticos, Rapamicina y los Senolíticos.

Biografía del autor/a

Luis Fernando Cifuentes Monje, Academia Nacional de Medicina

Miembro Correspondiente de la Academia Nacional de Medicina

Referencias bibliográficas

Taromin G, Ferrante F, Vieni S, Grassi N, Russo A & Mirisola MG. Longevity: Lesson from model organism. Genes. 2019; 10(7): 518.

Zhang S, Li Fei, Zhou T, Wang G & Li Zhuo. Caenorhabditis elegans as a Useful Model for Studying Aging Mutations. Front Endocrinol. 2020; 11: 554994.

Murata S, Ebeling M, Meyer AC, Schmidt-Mende K, Hammar N & Modig K. Blood biomarker profiles and exceptional longevity: comparison of centenarians and non-centenarians in a 35-year follow-up of the Swedish AMORIS cohort. GeroScience. 2024; 46: 1693-1702.

Li X, Ploner A, Wang Y, Zhan Y, Pedersen NL, Magnusson PE, Jylhävä J & Hägg S. Clinical biomarkers and associations with healthspan and lifespan: Evidence from observational and genetic data. EBioMedicine. 2021: 103318.

Franceschi C, Bonafé M, Valensin S, Olivieri F, De Luca M, Ottaviani E & De Benedictis G. Inflammaging. An evolutionary perspective on immunosenescence. Ann. N. Y. Acad. Sci. 2000; 908: 244–254.

Yousefzadeh M.J, Flores R.R, Zhu Y, Schmiechen Z.C, Brooks R.W, Trussoni C.E, Cui Y, Angelini L, Lee K.A, McGowan S.J, et al. An aged immune system drives senescence and ageing of solid organs. Nature. 2021; 594: 100–105.

Desdín-Micó G, Soto-Heredero G, Aranda J.F, Oller J, Carrasco E, Gabandé-Rodríguez E, Blanco E.M, Alfranca A, Cussó L, Desco M, et al. T cells with dysfunctional mitochondria induce multimorbidity and premature senescence. Science. 2020; 368: 1371– 1376.

Schreiber S, Aden K, Bernardes J.P, Conrad C, Tran F, Höper H, Volk V, Mishra N, Blase J.I, Nikolaus S, et al. Therapeutic interleukin-6 trans-signaling inhibition by olamkicept (sgp130Fc) in patients with active inflammatory bowel disease. Gastroenterology. 2021; 160: 2354–2366.e11.

Moots R.J, Sebba A, Rigby W, Ostor A, Porter-Brown B, Donaldson, F., Dimonaco, S, Rubbert-Roth, A, van Vollenhoven R & Genovese M.C. Effect of tocilizumab on neutrophils in adult patients with rheumatoid arthritis: pooled analysis of data from phase 3 and 4 clinical trials. Rheumatol. Oxf. Engl. 2017; 56: 541–549.

McNeil J.J, Nelson M.R, Woods R.L, Lockery J.E, Wolfe R, Reid C.M, Kirpach B, Shah R.C, Ives D.G, Storey E., et al. Effect of aspirin on all-cause mortality in the healthy elderly. N. Engl. J. Med. 2018; 379: 1519–1528.

Eisenberg T, Knauer H, Schauer A, Buttner S, Ruckenstuhl, C, Carmona-Gutierrez D, Ring J, Schroeder S, Magnes C, Antonacci L, et al. Induction of autophagy by spermidine promotes longevity. Nat. Cell Biol. 2009; 11: 1305–1314.

Schroeder S, Hofer SJ, Zimmermann A, Pechlaner R, Dammbrueck C, Pendl T, Marcello G.M, Pogatschnigg V, Bergmann M, Muller M, et al. Dietary spermidine improves cognitive function. Cell Rep. 2021; 35: 108985.

Levine B, & Kroemer G. Biological functions of autophagy genes: A disease perspective. Cell. 2019; 176: 11–42.

Aman Y, Schmauck-Medina T, Hansen M, Morimoto R.I, Simon A.K, Bjedov I, Palikaras K, Simonsen A, Johansen T, Tavernarakis N, et al. Autophagy in healthy aging and disease. Nat Aging. 2021; 1: 634– 650.

Wirth M, Benson G, Schwarz C, Köbe T, Grittner U, Schmitz D, Sigrist S.J, Bohlken J, Stekovic S, Madeo F & Floel A. The effect of spermidine on memory performance in older adults at risk for dementia: A randomized controlled trial. Cortex. 2018; 109: 181–188.

Kiechl S, Pechlaner R, Willeit P, Notdurfter M, Paulweber B, Willeit K, Werner P, Ruckenstuhl C, Iglseder B, Weger S, et al. Higher spermidine intake is linked to lower mortality: a prospective population-based study. Am. J. Clin. Nutr. 2018; 108: 371–380.

Ramsey K.M, Mills K.F, Satoh A, & Imai S.. Age-associated loss of Sirt1-mediated enhancement of glucose-stimulated insulin secretion in beta cell-specific Sirt1-overexpressing (BESTO) mice. Aging Cell. 2008; 7: 78–88.

Martin-Montalvo A, Mercken E.M, Mitchell S.J, Palacios H.H, Mote, P.L, Scheibye-Knudsen M, Gomes A.P, Ward T.M, Minor R.K, Blouin, M.J, et al. Metformin improves healthspan and lifespan in mice. Nat. Commun. 2013; 4: 2192.

Strong R, Miller R.A, Antebi A, Astle C.M, Bogue M, Denzel M.S, Fernandez E, Flurkey K, Hamilton K.L, Lamming D.W, et al. Longer lifespan in male mice treated with a weakly estrogenic agonist, an antioxidant, an alpha-glucosidase inhibitor or a Nrf2-inducer. Aging Cell. 2016; 15: 872–884

Solier S, Muller ., Canēque T, Versini A, Mansart A, Sindikubwabo F, Baron L, Emam L, Gestraud P, Pantoș, G.D, et al. A druggable copper-signalling pathway that drives inflammation. Nature. 2023; 617: 386–394.

Noren Hooten N, Martin-Montalvo A, Dluzen D.F, Zhang Y, Bernier M, Zonderman A.B, Becker K.G, Gorospe M, de Cabo R & Evans M.K. Metformin-mediated increase in DICER1 regulates microRNA expression and cellular senescence. Aging Cell. 2016; 15: 572–581.

Stevenson-Hoare J, Leonenko G, & Escott-Price V. Comparison of long-term effects of metformin on longevity between people with type 2 diabetes and matched non-diabetic controls. BMC Public Health. 2023; 23: 804.

Lin Y, Wang K, Ma C, Wang X, Gong Z, Zhang R, Zang D, & Cheng Y. Evaluation of metformin on cognitive improvement in patients with non-dementia vascular cognitive impairment and abnormal glucose metabolism. Front. Aging Neurosci. 2018; 10: 227.

Ng T.P, Feng L, Yap K.B, Lee T.S, Tan C.H, & Winblad, B. Long-term metformin usage and cognitive function among older adults with diabetes. J. Alzheimers Dis. 2014; 41: 61–68.

Clinicaltrials.gov. [consultado el 19 de marzo de 2024]. Disponible en: https://clinicaltrials.gov/search?cond=metformin&term=longevity

Drucker D.J, Habener J.F, & Holst J.J. Discovery, characterization, and clinical development of the glucagon-like peptides. J. Clin. Invest. 2017; 127: 4217–4227.

Li Z, Chen X, Vong J.S.L, Zhao L, Huang J, Yan L.Y.C, Ip B, Wing Y.K, Lai H.M, Mok V.C.T & Ko H.. Systemic GLP-1R agonist treatment reverses mouse glial and neurovascular cell transcriptomic aging signatures in a genome-wide manner. Commun. Biol. 2021; 4: 656.

Glotfelty E.J, Olson L, Karlsson T.E, Li Y & Greig N.H. Glucagon-like peptide-1 (GLP-1)-based receptor agonists as a treatment for Parkinson’s disease. Expert Opin. Investig. Drugs. 2020; 29: 595–602.

Ahrén B, Atkin S.L, Charpentier G, Warren M.L, Wilding J.P.H, Birch S, Holst A.G & Leiter L.A. Semaglutide induces weight loss in subjects with type 2 diabetes regardless of baseline BMI or gastrointestinal adverse events in the SUSTAIN 1 to 5 trials. Diabetes Obes. Metab. 2018; 20: 2210–2219.

Cukierman-Yaffe T, Gerstein H.C, Colhoun H.M, Diaz R, García-Pérez L.E, Lakshmanan M, Bethel A, Xavier D, Probstfield J, Riddle M.C, et al. Effect of dulaglutide on cognitive impairment in type 2 diabetes: an exploratory analysis of the REWIND trial. Lancet Neurol. 2020; 19: 582–590.

Gejl M, Gjedde A, Møller A, Hansen S.B, Vang K, Rodel, A, Brændgaard H, Gottrup H, Schacht A, et al. In Alzheimer’s Disease, 6-month treatment with GLP- 1 analog prevents decline of brain glucose metabolism: randomized, placebo-controlled, double-blind clinical trial. Front. Aging Neurosci. 2016; 8: 108.

Clinicaltrials.gov. [consultado el 19 de marzo de 2024]. Disponible en: https://clinicaltrials.gov/search?cond=GLP-1

Bieganowski P & Brenner C. Discoveries of nicotinamide riboside as a nutrient and conserved NRK genes establish a Preiss-Handler independent route to NAD+ in fungi and humans. Cell. 2004; 117: 495–502.

Dellinger R.W, Santo S.R., Morris M, Evans M, Alminana D, Guarente L & Marcotulli E. Repeat dose NRPT (nicotinamide riboside and pterostilbene) increases NAD(+) levels in humans safely and sustainably: a randomized, double-blind, placebo-controlled study. NPJ Aging Mech. Dis. 2017; 3: 17.

Zhang H, Ryu D, Wu Y, Gariani K, Wang X, Luan P, D’Amico D, Ropelle E.R, Lutolf M.P, Aebersold R., et al. NAD(+) repletion improves mitochondrial and stem cell function and enhances life span in mice. Science. 2016; 352: 1436–1443.

Yoshino M, Yoshino J, Kayser B.D, Patti G.J, Franczyk M.P, Mills K.F, Sindelar M, Pietka T, Patterson B.W, Imai S.I & Klein S. Nicotinamide mononucleotide increases muscle insulin sensitivity in prediabetic women. Science. 2021; 372: 1224–1229.

Yi L, Maier A.B, Tao R, Lin Z, Vaidya A, Pendse S, Thasma S, Andhalkar N, Avhad G & Kumbhar V. The efficacy and safety of beta-nicotinamide mononucleotide (NMN) supplementation in healthy middle-aged adults: a randomized, multicenter, double-blind, placebo-controlled, parallel-group, dose-dependent clinical trial. GeroScience. 2023; 45: 29–43.

Dellinger R.W, Holmes H.E, Hu-Seliger T, Butt R.W, Harrison S.A, Mozaffarian D, Chen O & Guarente,L. Nicotinamide riboside and pterostilbene reduces markers of hepatic inflammation in NAFLD: A double-blind, placebo-controlled clinical trial. Hepatology. 2023; 78: 863–877.

Vreones M, Mustapic M, Moaddel R, Pucha K.A, Lovett J, Seals D.R, Kapogiannis D & Martens C.R. Oral nicotinamide riboside raises NAD+ and lowers biomarkers of neurodegenerative pathology in plasma extracellular vesicles enriched for neuronal origin. Aging Cell. 2023; 22: e13754.

de la Rubia J.E, Drehmer E, Platero J.L, Benlloch M, Caplliure-Llopis J, Villaron-Casales C, de Bernardo N, Alarcón J, Fuente C, Carrera S, et al. Efficacy and tolerability of EH301 for amyotrophic lateral sclerosis: a randomized, double-blind, placebo-controlled human pilot study. Amyotroph. Lateral Scler. Frontotemporal Degener. 2019; 20: 115–122.

Simic P, Vela Parada X.F, Parikh S.M, Dellinger R, Guarente L.P & Rhee E.P. Nicotinamide riboside with pterostilbene (NRPT) increases NAD(+) in patients with acute kidney injury (AKI): a randomized, double-blind, placebo-controlled, stepwise safety study of escalating doses of NRPT in patients with AKI. BMC Nephrol. 2020; 21: 342.

Clinicaltrials.gov. [consultado el 20 de marzo de 2024]. Disponible en: https://clinicaltrials.gov/search?cond=nad%20

Backhed F, Ley R.E, Sonnenburg J.Z, Peterson D.A & Gordon J.I. Host-bacterial mutualism in the human intestine. Science. 2005; 307: 1915–1920.

Bárcena C, Valdés-Mas R, Mayoral P, Garabaya C, Durand S, Rodríguez F, Fernández-García M.T, Salazar N, Nogacka A.M, Garatachea N, et al. Healthspan and lifespan extension by fecal microbiota transplantation into progeroid mice. 2019. Nat. Med; 25: 1234–1242.

Dong H, Rowland I, Thomas L.V & Yaqoob P. Immunomodulatory effects of a probiotic drink containing Lactobacillus casei Shirota in healthy older volunteers. Eur. J. Nutr. 2013; 52: 1853–1863.

Miller L.E, Lehtoranta L & Lehtinen, M.J. The effect of Bifido bacteriumanimalis ssp. lactisHN019 on cellular immune function in healthy elderly subjects: systematic review and meta-analysis. Nutrients; 2017: 191.

Chen A.C, Fang T.J, Ho H.H, Chen J.F, Kuo Y.W, Huang Y.Y, Tsai S.Y, Wu S.F, Lin H.C & Yeh, Y.T. A multi-strain probiotic blend reshaped obesity-related gut dysbiosis and improved lipid metabolism in obese children. Front. Nutr. 2022; 9: 922993.

Ahn H.Y, Kim M, Ahn Y.T, Sim J.H, Choi I.D, Lee S.H & Lee J.H. The triglyceride-lowering effect of supplementation with dual probiotic strains, Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032: reduction of fasting plasma lysophosphatidylcholines in nondiabetic and hypertriglyceridemic subjects. Nutr. Metab. Cardiovasc. Dis. 2015; 25: 724–733.

Kuro M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, Ohyama Y, Kurabayashi M, Kaname T, Kume E, et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature. 1997; 390: 45–51.

Clinicaltrials.gov. [consultado el 20 de marzo de 2024]. Disponible en: https://clinicaltrials.gov/ search?cond=probiotics

Condon K.J & Sabatini, D.M. Nutrient regulation of mTORC1 at a glance. J. Cell Sci. 2019; 132: jcs222570.

Harrison D.E, Strong R, Sharp Z.D, Nelson J.F, Astle C.M, Flurkey K, Nadon N.L, Wilkinson J.E, Frenkel K, Carter C.S, et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature. 2009; 460: 392–395.

Chung C.L, Lawrence I, Hoffman M, Elgindi D, Nadhan K, Potnis M, Jin A, Sershon C, Binnebose R, Lorenzini A & Sell, C. Topical rapamycin reduces markers of senescence and aging in human skin: an exploratory, prospective, randomized trial. GeroScience. 2019; 41: 861–869.

Clinicaltrials.gov. [consultado el 20 de marzo de 2024]. Disponible en: https://clinicaltrials.gov/ search?cond=rapamycin&term=longevity

Svatek R.S, Ji N, de Leon E, Mukherjee N.Z, Kabra A, Hurez V, Nicolas M, Michalek J.E, Javors M, Wheeler K, et al. Rapamycin prevents surgery-induced immune dysfunction in patients with bladder cancer. Cancer Immunol. Res. 2019; 7: 466–475.

Hayflick L. The limited in vitro lifetime of human diploid cell strains. Exp. Cell Res. 1965; 37: 614–636.

Baker D.J, Wijshake T, Tchkonia T, LeBrasseur N.K, Childs B.G, van de Sluis B, Kirkland J.L & van Deursen J.M. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature. 2011; 479: 232–236.

Zhu Y, Tchkonia T, Pirtskhalava T, Gower A.C, Ding H, Giorgadze N, Palmer A.K, Ikeno Y, Hubbard G.B, Lenburg M., et al. The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell. 2015; 14: 644–658.

Gonzales M.M, Garbarino V.R, Marques Zilli E, Petersen R.C, Kirkland J.L, Tchkonia T, Musi N, Seshadri S, Craft S & Orr M.E. Senolytic therapy to modulate the progression of Alzheimer’s disease (SToMP-AD): A pilot clinical trial. J. Prev. Alzheimers Dis. 2022; 9: 22–29.

Kuro M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, Ohyama Y, Kurabayashi M, Kaname T, Kume E, et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature. 1997; 390: 45–51.

Clinicaltrials.gov. [consultado el 20 de marzo de 2024]. Disponible en: https://clinicaltrials.gov/search?cond=senolytics

Guarente L, Sinclair D.A & Kroemer G. Human trials exploring anti-aging medicines. Cell Metab. 2024; 36(2): 354-376.

Cómo citar

[1]
Cifuentes Monje, L.F. 2024. Avances en la investigación sobre longevidad: Focos actuales y perspectivas futuras. Medicina. 46, 1 (abr. 2024), 156–168. DOI:https://doi.org/10.56050/01205498.2337.

Descargas

Los datos de descargas todavía no están disponibles.

Descargas

Publicado

2024-04-19

Número

Sección

Artículos de Investigación
Crossref Cited-by logo