NACIMIENTO DE LA QUIMIOTERAPIA

  • Luis H. Camacho Center for Oncology and Blood Disorders. Houston
Palabras clave: Quimioterapia, agentes oncológicos, drogas citotóxicas, cáncer, historia

Resumen

El uso de agentes químicos para tratar enfermedades se remonta a los primeros asentamientos humanos. Sin embargo, el desarrollo de terapias químicas como tal, se le atribuye al médico Paul Ehrlich con el desarrollo de su “bala de plata” para tratar la sífilis con arsenicales. La quimioterapia en cáncer surgió a partir del uso de armas biológicas en la Primera Guerra Mundial y el desarrollo del gas mostaza en 1917. Sus propiedades mielotóxicas y vesicantes fueron reconocidas en 1946 por Goodman y colaboradores y posteriormente utilizadas en pacientes con leucemia y linfomas. Después de 30 años de investigación, desarrollo de nuevos agentes e identificación de mecanismos diversos, se creó la oncología médica como subespecialidad de Medicina Interna en EEUU a fines de 1973. Los mayores avances oncológicos ocurrieron en estas tres últimas décadas como resultado de grandes descubrimientos tecnológicos en el área de biología molecular y genómica, que a su vez generaron un enorme avance en la investigación en cáncer. El acelerado desarrollo terapéutico oncológico ha impactado: a) el número anual de agentes aprobados por la FDA, b) la agilidad de los procesos de aprobación, c) el diseño de estudios clínicos y d) renovado el optimismo con el que pacientes y profesionales de la salud enfrentan el cáncer. Además, nuevas disciplinas nacieron (p.e., inmuno-oncología, cardio-oncología), y aquellas ya establecidas se sofisticaron aún más (radioterapia, medicina paliativa, etc). Este artículo revisa aspectos históricos relacionados con el desarrollo de la quimioterapia, los principios básicos para su aplicación y la combinación con otros agentes citotóxicos, terapias diana, e inmuno-oncología.

Biografía del autor/a

Luis H. Camacho, Center for Oncology and Blood Disorders. Houston
MD, MPH. Center for Oncology and Blood Disorders. Houston, United States of America

Citas

1. Long PH. Paul Ehrlich and modern chemotherapy. Bull N Y Acad Med. 1952;28(5):344-6.
2. Lectures N. Paul Ehrlich – Biographical. NobelMedia AB 20201967; 2020 [consultado 09 septiembre 2020]. Disponible en:
https://www.nobelprize.org/prizes/medicine/1908/ehrlich/biographical/.
3. Thorburn AL. Paul Ehrlich: pioneer of chemotherapy and cure by arsenic (1854-1915). Br J Vener Dis. 1983;59(6):404-5.
4. Pechura CM. From the Institute of Medicine. JAMA. 1993;269(4):453.
5. Wilke C. From Chemical Weapon to Chemotherapy, 1917–1946 The Scientist. 2019 [consultado 22 septiembre 2020]. Disponible en:
https://www.the-scientist.com/foundations/from-chemical-weapon-to-chemotherapy--19171946-65655.
6. Goodman LS, Wintrobe MM, Dameshek W, Goodman MJ, Gilman A, McLennan MT. Nitrogen mustard therapy. Use of methyl-bis(beta-chloroethyl)amine hydrochloride and tris(beta-chloroethyl)amine hydrochloride for Hodgkin's disease, lymphosarcoma, leukemia and certain allied and miscellaneous disorders. JAMA. 1984;251(17):2255-61.
7. DeVita VT, Jr., Chu E. A history of cancer chemotherapy. Cancer Res. 2008;68(21):8643-53.
8. Gellhorn A, Jones LO. Chemotherapy of malignant disease. Am J Med. 1949;6(2):188-231.
9. Schepartz SA. Historical overview of the National Cancer Institute Fermentation Program. Recent Results Cancer Res. 1978;63:30-2.
10. Li MC. Current status of cancer chemotherapy. J Natl Med Assoc. 1960;52(5):315-20.
11. Li MC, Whitmore WF, Jr., Golbey R, Grabstald H. Effects of combined drug therapy on metastatic cancer of the testis. JAMA. 1960;174:1291-9.
12. Devita VT, Jr., Serpick AA, Carbone PP. Combination chemotherapy in the treatment of advanced Hodgkin's disease. Ann Intern Med. 1970;73(6):881-95.
13. FDA. Approval for Imatinib Mesylate for the treatment of patients with chronic myelogenous leukemia after therapy with interferon. FDA.gov. 2001 [consultado 19 octubre 2020]. Disponible en: https://www.accessdata.fda. gov/drugsatfda_docs/nda/2001/21335_Gleevec.cfm.
14. Benitez JC, Remon J, Besse B. Current Panorama and Challenges for Neoadjuvant Cancer Immunotherapy. Clin Cancer Res. 2020;26(19):5068-77.
15. Higby DJ, Wallace HJ, Jr., Holland JF. Cis-diamminedichloroplatinum (NSC-119875): a phase I study. Cancer Chemother Rep. 1973;57(4):459-63.
16. FDA. Approval package for gemcitabine hydrochloride - Center for Drug Evaluation and Research accessdata. fda.gov.1996 [consultado 4 octubre 2020 ]. Disponible en:
https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=020509.
17. FDA. Azacitidine approval - Center for Drug Evaluation and Research access.fda.gov. 2004 [consultado 04 octubre 2020]. Disponible en: https://www.accessdata.fda. gov/drugsatfda_docs/nda/2004/50-794_Vidaza_Prntlbl. pdf.
18. Fili C, Malagola M, Follo MY, Finelli C, Lacobucci I, Martinelli G et al. Prospective phase II Study on 5-days azacitidine for treatment of symptomatic and/or erythropoietin unresponsive patients with low/INT-1-risk myelodysplastic syndromes. Clin Cancer Res. 2013;19(12):3297-308.
19. Takimoto CH. Maximum tolerated dose: clinical endpoint for a bygone era? Target Oncol. 2009;4(2):143-7.
20. Goodman AL, Gilman A. Goodman & Gilman’s The Pharmacological Basis of Therapeutics. 12a ed. Brunton L, Chabner B, Knollman B, editors; 2011.
21. Heinrich MC, Blanke CD, Druker BJ, Corless CL. Inhibition of KIT tyrosine kinase activity: a novel molecular approach to the treatment of KIT-positive malignancies. J Clin Oncol. 2002;20(6):1692-703.
22. Norton L. Cancer log-kill revisited. Am Soc Clin Oncol Educ Book. 2014:3-7.
23. Hansen E, Read AF. Cancer therapy: Attempt cure or manage drug resistance? Evol Appl. 2020;13(7):1660- 72.
24. Chen JH, Kuo YH, Luh HP. Optimal policies of noncross-resistant chemotherapy on Goldie and Coldman's cancer model. Math Biosci. 2013;245(2):282-98.
25. Aleksakhina SN, Kashyap A, Imyanitov . Mechanisms of acquired tumor drug resistance. Biochim Biophys Acta Rev Cancer. 2019;1872(2):188310.
26. Surbone A, Norton L. Kinetics of breast neoplasms. Minerva Med. 1994;85(1-2):7-16.
27. Norton L, Simon R, Brereton HD, Bogden AE. Predicting the course of Gompertzian growth. Nature. 1976;264(5586):542-5.
28. Norton L, Simon R. The Norton-Simon hypothesis revisited. Cancer Treat Rep. 1986;70(1):163-9.
29. Untch M, Bergh J, Citron M, Hudis CA, Huober J, Mobus V et al. Dose-Dense Therapy. Breast Care (Basel). 2008;3(2):134-8.
30. Hudis CA, Schmitz N. Dose-dense chemotherapy in breast cancer and lymphoma. Semin Oncol. 2004;31(3 Suppl 8):19-26.
31. Saad ED, Katz A. Progression-free survival and time to progression as primary end points in advanced breast cancer: often used, sometimes loosely defined. Ann Oncol. 2009;20(3):460-4.
32. Querellou S, Valette F, Bodet-Milin C, Oudoux A, Carlier T, Harousseau JL et al. FDG-PET/CT predicts outcome in patients with aggressive non-Hodgkin's lymphoma and Hodgkin's disease. Ann Hematol. 2006;85(11):759- 67.
33. Miele E, Spinelli GP, Miele E, Tomao F, Tomao S. Albumin-bound formulation of paclitaxel (Abraxane ABI-007) in the treatment of breast cancer. Int J Nanomedicine. 2009;4:99-105.
34. Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP et al. Pembrolizumab for the treatment of nonsmall-cell lung cancer. N Engl J Med. 2015;372(21):2018- 28.
35. Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med. 2004;350(23):2335-42.
36. West H, McCleod M, Hussein M, Morabito A, Rittmeyer A, Conter HJ et al. Atezolizumab in combination with carboplatin plus nab-paclitaxel chemotherapy compared with chemotherapy alone as first-line treatment for Nacimiento dmetastatic non-squamous non-small-cell lung cancer (IMpower130): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2019;20(7):924-37.
37. Paz-Ares L, Luft A, Vicente D, Tafreshi A, Gumus M, Mazieres J et al. Pembrolizumab plus Chemotherapy for Squamous Non-Small-Cell Lung Cancer. N Engl J Med. 2018;379(21):2040-51.
38. Gandhi L, Rodriguez-Abreu D, Gadgeel S, Esteban E, Felip E, De Angelis F et al. Pembrolizumab plus Chemotherapy in Metastatic Non-Small-Cell Lung Cancer. N Engl J Med. 2018;378(22):2078-92.
39. Garon EB, Ciuleanu TE, Arrieta O, Prabhash K, Syrigos KN, Goksel T et al. Ramucirumab plus docetaxel versus placebo plus docetaxel for second-line treatment of stage IV non-small-cell lung cancer after disease progression on platinum-based therapy (REVEL): a multicentre, double-blind, randomised phase 3 trial. Lancet. 2014;384(9944):665-73.
40. Ogura M, Ando K, Taniwaki M, Watanabe T, Uchida T, Ohmachi K et al. Feasibility and pharmacokinetic study of bendamustine hydrochloride in combination with rituximab in relapsed or refractory aggressive B cell nonHodgkin's lymphoma. Cancer Sci. 2011;102(9):1687-92.
41. Martino R, Perea G, Caballero MD, Mateos MV, Ribera JM, de Oteyza JP et al. Cyclophosphamide, pegylated liposomal doxorubicin (Caelyx), vincristine and prednisone (CCOP) in elderly patients with diffuse large B-cell lymphoma: results from a prospective phase II study. Haematologica. 2002;87(8):822-7.
42. Zinzani PL, Santoro A, Gritti G, Brice P, Barr PM, Kuruvilla J et al. Nivolumab Combined With Brentuximab Vedotin for Relapsed/Refractory Primary Mediastinal Large B-Cell Lymphoma: Efficacy and Safety From the Phase II CheckMate 436 Study. J Clin Oncol. 2019;37(33):3081- 9.
43. Slamon D, Eiermann W, Robert N, Pienkowski T, Martin M, Press M et al. Adjuvant trastuzumab in HER2-positive breast cancer. N Engl J Med. 2011;365(14):1273-83.
44. Wheeler GP. Studies related to the mechanisms of action of cytotoxic alkylating agents: a review. Cancer Res. 1962;22:651-88.
45. Emadi A, Jones RJ, Brodsky RA. Cyclophosphamide and cancer: golden anniversary. Nat Rev Clin Oncol. 2009;6(11):638-47.
46. Reedijk J, Lohman PH. Cisplatin: synthesis, antitumour activity and mechanism of action. Pharm Weekbl Sci. 1985;7(5):173-80.
47. White JC. Recent concepts on the mechanism of action of methotrexate. Cancer Treat Rep. 1981;65 Suppl 1:3- 12.
48. Parker WB, Cheng YC. Metabolism and mechanism of action of 5-fluorouracil. Pharmacol Ther. 1990;48(3):381- 95.
49. Maslak P, Chanel S, Camacho LH, Soignet S, Pandolfi PP, Guernah I et al. Pilot study of combination transcriptional modulation therapy with sodium phenylbutyrate and 5-azacytidine in patients with acute myeloid leukemia or myelodysplastic syndrome. Leukemia. 2006; 20(2):212-7.
50. Robak T, Lech-Maranda E, Korycka A, Robak E. Purine nucleoside analogs as immunosuppressive and antineoplastic agents: mechanism of action and clinical activity. Curr Med Chem. 2006;13(26):3165-89.
51. Raymond E, Faivre S, Woynarowski JM, Chaney SG. Oxaliplatin: mechanism of action and antineoplastic activity. Semin Oncol. 1998;25(2 Suppl 5):4-12.
52. Liu LF, Desai SD, Li TK, Mao Y, Sun M, Sim SP. Mechanism of action of camptothecin. Ann N Y Acad Sci. 2000;922:1-10.
53. Sartiano GP, Lynch WE, Bullington WD. Mechanism of action of the anthracycline anti-tumor antibiotics, doxorubicin, daunomycin and rubidazone: preferential inhibition of DNA polymerase alpha. J Antibiot (Tokyo). 1979;32(10):1038-45.
54. Martinez-Serra J, Maffiotte E, Martin J, Bex T, NavarroPalou M, Ros T et al. Yondelis(R) (ET-743, Trabectedin) sensitizes cancer cell lines to CD95-mediated cell death: new molecular insight into the mechanism of action. Eur J Pharmacol. 2011;658(2-3):57-64.
55. van Maanen JM, Retel J, de Vries J, Pinedo HM. Mechanism of action of antitumor drug etoposide: a review. J Natl Cancer Inst. 1988;80(19):1526-33.
56. Dorr RT. Bleomycin pharmacology: mechanism of action and resistance, and clinical pharmacokinetics. Semin Oncol. 1992;19(2 Suppl 5):3-8.
57. Larsen AK, Galmarini CM, D'Incalci M. Unique features of trabectedin mechanism of action. Cancer Chemother Pharmacol. 2016;77(4):663-71.
58. Muller WE, Zahn RK. Bleomycin, an antibiotic that removes thymine from double-stranded DNA. Prog Nucleic Acid Res Mol Biol. 1977;20:21-57.
59. Kumar K, Kaur J, Walia S, Pathak T, Aggarwal D. Lasparaginase: an effective agent in the treatment of acute lymphoblastic leukemia. Leuk Lymphoma. 2014;55(2):256-62.
60. Pagliardi GL, Gabutti V, Gavosto F. Mechanism of action of L-asparaginase on the cell cycle and growth in acute lymphoblastic leukemia. Acta Haematol. 1973;50(5):257-68.
61. Lipov EG, Joshi JR, Sanders S. A new mechanism of action for tamoxifen. Lancet Oncol. 2009;10(6):542.
62. Miller WR. Aromatase inhibitors: mechanism of action and role in the treatment of breast cancer. Semin Oncol. 2003;30(4 Suppl 14):3-11.
63. Furr BJ, Tucker H. The preclinical development of bicalutamide: pharmacodynamics and mechanism of action. Urology. 1996;47(1A Suppl):13-25; discussion 9-32.
64. Camacho LH, Soignet SL, Chanel S, Ho R, Heller G, Scheinberg DA et al. Leukocytosis and the retinoic acid syndrome in patients with acute promyelocytic leukemia treated with arsenic trioxide. J Clin Oncol. 2000;18(13):2620-5.
65. Camacho LH. Clinical applications of retinoids in cancer medicine. J Biol Regul Homeost Agents. 2003;17(1):98- 114.
66. Camacho LH. CTLA-4 blockade with ipilimumab: biology, safety, efficacy, and future considerations. Cancer Med. 2015;4(5):661-72.
67. Camacho LH. Novel therapies targeting the immune system: CTLA4 blockade with tremelimumab (CP-675,206), a fully human monoclonal antibody. Expert Opin Investig Drugs. 2008;17(3):371-85.
68. Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366(26):2455-65.
69. Yarbro JW. Mechanism of action of hydroxyurea. Semin Oncol. 1992;19(3 Suppl 9):1-10.
70. Mellor HR, Callaghan R. Resistance to chemotherapy in cancer: a complex and integrated cellular response. Pharmacology. 2008;81(4):275-300.
Publicado
2021-02-11
Sección
Artículos Históricos