SIGLO XXI: EL SIGLO DE LAS ENFERMEDADES CAUSADAS POR CORONAVIRUS, SARS / MERS / COVID-19

  • Carlos Arturo Alvarez Moreno Universidad Nacional de Colombia
Palabras clave: Virus del SARS, MERS, Covid-19, Coronavirus

Resumen

En las primeras dos décadas del siglo XXI, la humanidad ha sido testigo de tres brotes de nuevos coronavirus de origen zoonótico. Estas tres betas de coronavirus, SARS-CoV, MERS-CoV y el más reciente, el SARS-CoV-2, comparten un posible reservorio común, el murciélago. De manera diferente, han llegado a infectar a los seres humanos y han causado síndromes respiratorios severos: SARS, MERS y la COVID-19, respectivamente, con diferentes tasas de letalidad. En este artículo se describen las características de cada uno de ellos y se comparan desde el punto de vista biológico, epidemiológico y clínico.

Biografía del autor/a

Carlos Arturo Alvarez Moreno, Universidad Nacional de Colombia
MD, MSc, PhD. Profesor titular de Enfermedades Infecciosas y Medicina Tropical, Departamento de Medicina Interna, Facultad de Medicina, Universidad Nacional de Colombia. Vice-Presidente de Salud, Clínica Colsanitas. Miembro correspondiente, Academia Nacional de Medicina. Bogotá, Colombia.

Citas

1. World Health Organization [Internet]. Novel Coronavirus (2019-nCoV): Situation Report - 1 21 January 2020. [Acceso: 15 mayo de 2020]. Disponible en:
https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200121-sitrep-1-2019-ncov. pdf?sfvrsn=20a99c10_4.
2. World Health Organization [Internet]. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). [Acceso: 15 mayo de 2020]. Disponible en
https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf.
3. Cui J, Li F, Shi Z. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 2019; 17: 181–192.4. Peng GW, He JF, Lin JY. Epidemiological study on severe acute respiratory syndrome in Guangdong province. Chin J Epidemiol. 2003; 24: 350–352.
5. Zhong NS, Zheng BJ, Li YM, et al. Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People’s Republic of China, in February, 2003. Lancet. 2003; 362(9393): 1353-1358. Doi: 10.1016/s0140-6736(03)14630-2.
6. De Wit E, van Doremalen N, Falzarano D, Munster VJ. SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol. 2016; 14(8): 523-534. Doi:10.1038/nrmicro.2016.81.
7. Song Z, Xu Y, Bao L, et al. From SARS to MERS, Thrusting Coronaviruses into the Spotlight. Viruses. 2019; 11(1): 59. Published 2019 Jan 14. Doi: 10.3390/ v11010059.
8. Cheng VC, Lau SK, Woo PC, Yuen KY. Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection. Clin Microbiol Rev. 2007; 20(4): 660-694. Doi:10.1128/CMR.00023-07.
9. World Health Organization [Internet]. Novel coronavirus infection – update. [Acceso: 30 de mayo de 2020]. Disponible en: https://www.who.int/csr/don/2012_09_25/en/.
10. Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, FouchierRA. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia.NEngl J Med. 2012; 367: 1814–1820. Disponible en: http://dx.doi.org/10.1056/NEJMoa1211721.
11. de Groot RJ, Baker SC, Baric RS, Brown CS, Drosten C, Enjuanes L,Fouchier RA, Galiano M, Gorbalenya AE, et al. Middle East respiratory syndrome coronavirus (MERSCoV): announcement of the Coronavirus Study Group. J Virol. 2013; 87: 7790–7792. Disponible en: http://dx.doi.org/10.1128/JVI.01244-13.
12. van Boheemen S, de Graaf M, Lauber C, Bestebroer TM, Raj VS, ZakiAM, Osterhaus AD, Haagmans BL, Gorbalenya AE, Snijder EJ,Fouchier RA. Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans. mBio. 2012; 3(6): e00473–12. Disponible en: http://dx.doi.org/10.1128/mBio.00473-12.
13. Al-Abdallat MM, Payne DC, Alqasrawi S, et al. Hospitalassociated outbreak of Middle East respiratory syndrome coronavirus: a serologic, epidemiologic, and clinical description. Clin Infect Dis. 2014; 59(9): 1225-1233.
14. Chan JF, Lau SK, To KK, Cheng VC, Woo PC, Yuen KY. Middle East respiratory syndrome coronavirus: another zoonotic betacoronavirus causing SARS-like disease. Clin Microbiol Rev. 2015; 28(2): 465-522. Doi: 10.1128/ CMR.00102-14.
15. World Health Organization [Internet]. Middle East respiratory syndrome coronavirus (MERS-CoV). [Acceso: 10 de mayo de 2020]. Disponible en: https://www.who.int/emergencies/mers-cov/en/.
16. Abroug F, Slim A, Ouanes-Besbes L, Hadj Kacem MA, Dachraoui F,Ouanes I, Lu X, Tao Y, Paden C, Caidi H, Miao C, et al. Family cluster of Middle East respiratory syndrome coronavirus infections, Tunisia, 2013. Emerg Infect Dis. 2014; 20: 1527–1530. Disponible en: http://dx.doi.org/10.3201/eid2009.140378.
17. Assiri A, McGeer A, Perl TM, Price CS, Al Rabeeah AA, Cummings, DA, Alabdullatif ZN, et al. Hospital outbreak of Middle East respiratory syndrome coronavirus. N Engl J Med. 2013; 369: 407–416. Disponible en: http://dx.doi.org/10.1056/NEJMoa1306742.
18. Peiris JS, Chu CM, Cheng VC, et al. Clinical progression and viral load in a community outbreak of coronavirusassociated SARS pneumonia: a prospective study. Lancet. 2003; 361(9371): 1767-1772. Doi: 10.1016/s0140- 6736(03)13412-5
19. Petrosillo N, Viceconte G, Ergonul O, Ippolito G, Petersen E. COVID-19, SARS and MERS: are they closely related? Clin Microbiol Infect. 2020; 26(6): 729-734. Doi:10.1016/j.cmi.2020.03.026.
20. Xie M, Chen Q. Insight into 2019 novel coronavirus - An updated interim review and lessons from SARS-CoV and MERS-CoV. Int J Infect Dis. 2020; 94: 119-124. Doi:10.1016/j.ijid.2020.03.071
21. World Health Organization [Internet]. WHO MERS Global Summary and Assessment of Risk. [Acceso: 1 de Junio de 2020]. Disponible en:
https://www.who.int/csr/disease/coronavirus_infections/risk-assessment-august-2018.pdf?ua=1&ua=1&ua=1.
22. WHO [Internet]. Emergencies preparedness, response. Pneumonia of unknown origin – China. Disease outbreak news. [Acceso: 1 de Junio de 2020]. Available at:
https://www.who.int/csr/don/12-january-2020-novel-coronavirus-china/en/.
23. Hui DS, I Azhar E, Madani TA, et al. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health - The latest 2019 novel coronavirus outbreak in Wuhan, China. Int J Infect Dis. 2020; 91: 264- 266. Doi: 10.1016/j.ijid.2020.01.009.
24. Lam TT, Jia N, Zhang Y, et al. Identifying SARS-CoV2-related coronaviruses in Malayan pangolins. Nature. 2020; Disponible en: https://doi.org/10.1038/s41586-020-2169-0
25. Li X, Giorgi EE, Marichann MH, et al. Emergence of SARS-CoV-2 through Recombination and Strong Purifying Selection. Science Advances. 29 May, 2020: eabb9153. Doi:10.1126/sciadv.abb9153
26. WHO [Internet]. Coronavirus disease (COVID-19) Situation Report – 148. [Acceso: 16 de junio de 2020]. Disponible en: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200616-covid-19-sitrep-148-draft.pdf?sfvrsn=9b2015e9_2.
27. Liu Z, Chu R, Gong L, Su B, Wu J. The assessment of transmission efficiency and latent infection period on asymptomatic carriers of SARS-CoV-2 infection [published online ahead of print, 2020 Jun 13]. Int J Infect Dis. 2020; S1201-9712(20): 30471-9. Doi:10.1016/j. ijid.2020.06.036
28. Verity R, Okell LC, Dorigatti I, et al. Estimates of the severity of coronavirus disease 2019: a model-based analysis [published correction appears in Lancet Infect Dis. 2020 Apr 15;
29. Cummings MJ, Baldwin MR, Abrams D, et al. Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: a prospective cohort study. Lancet. 2020; 395(10239): 1763-1770. Doi: 10.1016/S0140-6736(20)31189-2
30. Tabata S, Imai K, Kawano S, et al. Clinical characteristics of COVID-19 in 104 people with SARS-CoV-2 infection on the Diamond Princess cruise ship: a retrospective analysis [published online ahead of print, 2020 Jun 12]. Lancet Infect Dis. 2020; S1473-3099(20): 30482-5. Doi: 10.1016/S1473-3099(20)30482-5
31. Oran DP, Topol EJ. Prevalence of Asymptomatic SARSCoV-2 Infection: A Narrative Review [published online ahead of print, 2020 Jun 3]. Ann Intern Med. 2020; M20- 3012. Doi:10.7326/M20-3012.
32. Wölfel R, Corman VM, Guggemos W, et al. Virological assessment of hospitalized patients with COVID-2019. Nature. 2020; 581(7809): 465-469. Doi:10.1038/s41586- 020-2196-x
33. Alvarez-Moreno CA, Rodríguez-Morales AJ. Testing Dilemmas: Post negative, positive SARS-CoV-2 RT-PCR - is it a reinfection? [Published online ahead of print, 2020 May 15]. Travel Med Infect Dis. 2020; 101743. Doi:10.1016/j.tmaid.2020.101743.
34. Omano-Bertrand S, Aho-Glele LS, Grandbastien B, Gehanno JF, Lepelletier D. Sustainability of SARS-CoV-2 in aerosols: Should we worry about airborne transmission? [Published online ahead of print, 2020 Jun 12]. J Hosp Infect. 2020; S0195-6701(20): 30303-0. Doi:10.1016/j. jhin.2020.06.018
35. Wong MC, Huang J, Lai C, Ng R, Chan FKL, Chan PKS. Detection of SARS-CoV-2 RNA in fecal specimens of patients with confirmed COVID-19: a meta-analysis [published online ahead of print, 2020 Jun 11]. J Infect. 2020; S0163-4453(20): 30394-7. Doi:10.1016/j. jinf.2020.06.012
36. Naqvi AAT, Fatima K, Mohammad T, et al. Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach [published online ahead of print, 2020 Jun 13]. Biochim Biophys Acta Mol Basis Dis. 2020; 165878. Doi:10.1016/j. bbadis.2020.165878.
37. Kim JS, Jang JH, Kim JM, Chung YS, Yoo CK, Han MG. Genome-Wide Identification and Characterization of Point Mutations in the SARS-CoV-2 Genome. Osong Public Health Res Perspect. 2020; 11(3): 101-111. Doi:10.24171/j.phrp.2020.11.3.05.
38. Flaxman S, Mishra S, Gandy A, et al. Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe. Nature (2020). Disponible en: https://doi.org/10.1038/s41586-020-2405-7
Publicado
2020-07-18
Sección
Historia de la Medicina