MARCADORES ELECTROENCEFALOGRÁFICOS Y FENOTIPO COGNITIVO EN LA ENFERMEDAD DE PARKINSON. UNA REVISIÓN SISTEMÁTICA

  • Jairo Alexander Carmona Arroyave Universidad de Antioquia
  • Carlos Andrés Tobón Quintero Universidad de Antioquia
  • David Antonio Pineda Salazar Universidad de Antioquia
Palabras clave: Biomarcadores, congnición, electroencefalografía, Revisión sistemática, Enfermedad de Parkinson, Electrofisiología

Resumen

Contexto: La Enfermedad de Parkinson (EP) se caracteriza por un conjunto heterogéneo de síntomas no motores que afectan la calidad de vida de pacientes y cuidadores. El deterioro cognitivo se presenta desde etapas tempranas y constituye un factor de riesgo de demencia. Múltiples estudios electroencefalográficos (EEG) apuntan a cambios específicos en la actividad cerebral relacionados con la progresión y el fenotipo cognitivo de la enfermedad. Sin embargo, no está claro qué medidas electrofisiológicas son más útiles como marcadores biológicos. Objetivo: Sintetizar la evidencia científica que determina las relaciones entre el EEG en reposo y el perfil cognitivo en la EP. Métodos: Se desarrolló una revisión sistemática mediante una búsqueda en las bases de datos MEDLINE y Embase. Se incluyeron estudios en humanos con EP, en los que se especificase el estatus cognitivo, y se hubiese efectuado el análisis cuantitativo del EEG (qEEG) en reposo. Resultados: Se seleccionaron 36 artículos originales, encontrando tres grupos de medidas: análisis espectrales, conectividad funcional (CF), y métodos no-lineales. Todas las medidas diferenciaron los pacientes de los controles sanos (CS), indicando una relación directa con características fisiopatológicas y clínicas de la EP. Las medidas de análisis espectral mostraron correlaciones con el perfil neuropsicológico y/o capacidad predictiva para el pronóstico cognitivo de la enfermedad. Las medidas de conectividad demostraron sensibilidad a diversas intervenciones terapéuticas, aunque se encontró evidencia escasa acerca de su relación con variables cognitivas. Conclusiones: Las medidas obtenidas del qEEG en reposo configuran instrumentos costo-efectivos útiles como potenciales biomarcadores de la EP y sus manifestaciones cognitivas.

Biografía del autor

Jairo Alexander Carmona Arroyave, Universidad de Antioquia
MD, Cirujano, Maestría en Neurociencias. Grupo de Neurociencias de Antioquia, Grupo de Neuropsicología y Conducta, Facultad de Medicina, Universidad de Antioquia. Medellín, Colombia.
Carlos Andrés Tobón Quintero, Universidad de Antioquia
MD, Cirujano, PhD en Neurociencias. Grupo de Neurociencias de Antioquia, Grupo de Neuropsicología y Conducta, Facultad de Medicina, Universidad de Antioquia. Medellín, Colombia.
David Antonio Pineda Salazar, Universidad de Antioquia
MD, Cirujano, PhD Honoris causa en Neurociencias Cognitivas. Grupo de Neurociencias de Antioquia, Facultad de Medicina, Universidad de Antioquia. Grupo de Neuropsicología y Conducta, Facultad de Psicología, Universidad de San Buenaventura. Medellín, Colombia.

Citas

1. Lee A, Gilbert RM. Epidemiology of Parkinson Disease. Neurol Clin. 2016; 34(4): 955–65.
2. Kalia L V, Lang AE. Parkinson’s disease. Lancet. 2015; 386(9996): 896–912.
3. Obeso JA, Rodriguez-Oroz MC, Stamelou M, Bhatia KP, Burn DJ. The expanding universe of disorders of the basal ganglia. Lancet. 2014; 384(9942): 523–31.
4. DeLong MR, Wichmann T. Circuits and circuit disorders of the basal ganglia. Arch Neurol. 2007; 64(1): 20–4.
5. Jankovic J. Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry. 2008; 79(4): 368–76.
6. Martinez-Martin P, Rodriguez-Blazquez C, Kurtis MM, Chaudhuri KR. The impact of non-motor symptoms on health-related quality of life of patients with Parkinson’s disease. Mov Disord. 2011; 26(3): 399–406.
7. Grun D, Pieri V, Vaillant M, Diederich NJ. Contributory Factors to Caregiver Burden in Parkinson Disease. J Am Med Dir Assoc. 2016; 17(7): 626–32.
8. Vossius C, Larsen JP, Janvin C, Aarsland D. The economic impact of cognitive impairment in Parkinson’s disease. Mov Disord. 2011; 26(8): 1541–4.
9. Aarsland D, Creese B, Politis M, Chaudhuri KR, Ffytche DH, Weintraub D, et al. Cognitive decline in Parkinson disease. Nat Rev Neurol. 2017; 13(4): 217–31.
10. Muslimovic D, Post B, Speelman JD, Schmand B. Cognitive profile of patients with newly diagnosed Parkinson disease. Neurology. 2005; 65(8): 1239–45.
11. Domellof ME, Ekman U, Forsgren L, Elgh E. Cognitive function in the early phase of Parkinson’s disease, a fiveyear follow-up. Acta Neurol Scand. 2015; 132(2): 79–88.
12. Hely MA, Reid WGJ, Adena MA, Halliday GM, Morris JGL. The Sydney multicenter study of Parkinson’s disease: the inevitability of dementia at 20 years. Mov Disord. 2008; 23(6): 837–44.
13. Algarni MA, Stoessl AJ. The role of biomarkers and imaging in Parkinson’s disease. Expert Rev Neurother. 2016; 16(2): 187–203.
14. Sporns O, Tononi G, Edelman GM. Connectivity and complexity: the relationship between neuroanatomy and brain dynamics. Neural Netw. 2000; 13(8–9): 909–22.
15. Bassett DS, Sporns O. Network neuroscience. Nat Neurosci. 2017; 20(3): 353–64.
16. Bressler SL, Menon V. Large-scale brain networks in cognition: emerging methods and principles. Trends Cogn Sci. 2010; 14(6): 277–90.
17. Lopes da Silva F. EEG and MEG: Relevance to Neuroscience. Neuron. 2017; 80(5): 1112–28.
18. Raichle ME. The restless brain: how intrinsic activity organizes brain function. Philos Trans R Soc Lond B Biol Sci. 2015; 370(1668).
19. Kanda PA de M, Anghinah R, Smidth MT, Silva JM. The clinical use of quantitative EEG in cognitive disorders. Dement Neuropsychol; 2009; 3: 195–203.
20. Higgins J, Green S, (editors). Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [updated March 2011]. Cochrane Collab. 2011.
21. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JPA, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J Clin Epidemiol. 2009; 62(10): e1-34.
22. Reeves B, Deeks J, Higgins J, Wells G. Chapter 13: Including non-randomized studies. In: Higgins JPT, Green S (editors), Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [updated March 2011]. Cochrane Collab. 2011.
23. Downs SH, Black N. The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. J Epidemiol Community Health. 1998; 52(6): 377–84.
24. Lopez de Argumedo M, Reviriego E, Rico R, Sobradillo N, Hurtado de Saracho I. Revisión externa y validación de instrumentos metodológicos para la Lectura Crítica y la síntesis de la evidencia científica. Madrid Serv Evaluación Tecnol Sanit del País Vasco. 2006; Report No.2.
25. Soikkeli R, Partanen J, Soininen H, Pääkkönen A, Riekkinen P. Slowing of EEG in Parkinson’s disease. Electroencephalogr Clin Neurophysiol. 1991; 79(3): 159–65.
26. Garcia-Mas A, Rosinol-Far A, Roca-Bennasar M, Llinas J, Rossello-Mir J. Frontal lobe involvement and cortical and subcortical deterioration in Parkinson’s disease evaluated using quantified electroencephalography. Arch Neurobiol (Madr). 1991; 54(6): 303–10.
27. Pin JC, Neau JP, Paquereau J, Rostykus C, Guehl D, Aubert I, et al. [Comparative study by computerized EEG of dementia of the ALzheimer type and Parkinson’s disease with dementia]. NeurophysiolClin. 1992; 22(0987–7053): 301–12.
28. Primavera A, Novello P. Quantitative electroencephalography in Parkinson’s disease, dementia, depression and normal aging. Neuropsychobiology. 1992; 25(2): 102–5.
29. Stanzione P, Marciani MG, Maschio M, Bassetti MA, Spanedda F, Pierantozzi M, et al. Quantitative EEG changes in non-demented Parkinson’s disease patients before and during L-dopa therapy. Eur J Neurol. 1996; 3(4): 354–62.
30. Bonanni L, Thomas A, Tiraboschi P, Perfetti B, Varanese S, Onofrj M, et al. EEG comparisons in early Alzheimer’s disease, dementia with Lewy bodies and Parkinson’s disease with dementia patients with a 2-year follow-up. Brain. 2008 Mar; 131(3): 690–705.
31. Pugnetti L, Baglio F, Farina E, Alberoni M, Calabrese E, Gambini A, et al. EEG evidence of posterior cortical disconnection in PD and related dementias. Int J Neurosci. 2010; 120(2): 88–98.
32. Babiloni C, De Pandis MF, Vecchio F, Buffo P, Sorpresi F, Frisoni GB, et al. Cortical sources of resting state electroencephalographic rhythms in Parkinson’s disease related dementia and Alzheimer’s disease. Clin Neurophysiol. 2011; 122(12): 2355–64.
33. Melgari JM, Curcio G, Mastrolilli F, Salomone G, Trotta L, Tombini M, et al. Alpha and beta EEG power reflects L-dopa acute administration in Parkinsonian patients. Front Aging Neurosci. 2014; 6(Oct).
34. Neufeld MY, Blumen S, Aitkin I, Parmet Y, Korczyn AD. EEG frequency analysis in demented and nondemented Parkinsonian patients. Dement Geriatr Cogn Disord. 1994; 5(1): 23–8.
35. Fogelson N, Kogan E, Korczyn A, Giladi N, Shabtai H, Neufeld M. Effects of rivastigmine on the quantitative EEG in demented Parkinsonian patients. Acta Neurol Scand. 2003; 107(4): 252–5.
36. Stam KJ, Tavy DL, Jelles B, Achtereekte HA, Slaets JP, Keunen RW. Non-linear dynamical analysis of multichannel EEG: clinical applications in dementia and Parkinson’s disease. Brain Topogr. 1994; 7(2): 141–50.
37. Stam C, Jelles B, Achtereekte H, Rombouts S, Slaets J, Keunen R. Investigation of EEG non-linearity in dementia and Parkinson’s disease. Electroencephalogr Clin Neurophysiol. 1995; 95(5): 309–17.
38. Jelles B, Achtereekte HA, Slaets JP, Stam CJ. Specific patterns of cortical dysfunction in dementia and Parkinson’s disease demonstrated by the acceleration spectrum entropy of the EEG. ClinElectroencephalogr. 1995; 26(0009–9155): 188–92.
39. Sandmann M, Piana E, Sousa D, De Bittencourt P. Digital EEG with brain mapping in Alzheimer’s dementia and Parkinson’s disease. A prospective controlled study. Arq Neuropsiquiatr. 1996; 54(1): 50–6.
40. Fonseca L, Tedrus G, Letro G, Bossoni A. Dementia, mild cognitive impairment and quantitative EEG in patients with Parkinson’s disease. Clin EEG Neurosci. 2009; 40(3): 168–72.
41. Fonseca L, Tedrus G, Carvas P, Machado E. Comparison of quantitative EEG between patients with Alzheimer’s disease and those with Parkinson’s disease dementia. Clin Neurophysiol. 2013; 124(10): 1970–4.
42. Muller V, Lutzenberger W, Pulvermuller F, Mohr B, Birbaumer N. Investigation of brain dynamics in Parkinson’s disease by methods derived from nonlinear dynamics. Exp brain Res. 2001; 137(1): 103–10.
43. Tanaka H, Koenig T, Pascual-Marqui RD, Hirata K, Kochi K, Lehmann D. Event-related potential and EEG Parkinson’s disease without and with dementia. Dement Geriatr Cogn Disord. 2000; 11(1): 39–45.
44. Serizawa K, Kamei S, Morita A, Hara M, Mizutani T, Yoshihashi H, et al. Comparison of quantitative EEGs between Parkinson disease and age-adjusted normal controls. J Clin Neurophysiol 2008; 25(6): 361–6.
45. Kamei S, Morita A, Serizawa K, Mizutani T, Hirayanagi K. Quantitative EEG analysis of executive dysfunction in Parkinson disease. J Clin Neurophysiol. 2010; 27(3): 193–7.
46. Morita A, Kamei S, Mizutani T. Relationship between slowing of the EEG and cognitive impairment in Parkinson disease. J Clin Neurophysiol. 2011; 28(4): 384–7.
47. Pezard L, Jech R, Růžička E. Investigation of non-linear properties of multichannel EEG in the early stages of Parkinson’s disease. Clin Neurophysiol. 2001; 112(1): 38.
48. Gagnon J-F, Fantini ML, Bédard M, Petit D, Carrier J, Rompré S, et al. Association between waking EEG slowing and REM sleep behavior disorder in PD without dementia. Neurology. 2004; 62(3): 401–6.
49. Silberstein P, Pogosyan A, Kuhn AA, Hotton G, Tisch S, Kupsch A, et al. Cortico-cortical coupling in Parkinson’s disease and its modulation by therapy. Brain. 2005; 128(Pt 6): 1277–91.
50. Caviness JN, Hentz JG, Evidente VG, Driver-Dunckley E, Samanta J, Mahant P, et al. Both early and late cognitive dysfunction affects the electroencephalogram in Parkinson’s disease. Park Relat Disord. 2007; 13(6): 348–54.
51. Klassen BT, Hentz JG, Shill HA, Driver-Dunckley E, Evidente VGH, Sabbagh MN, et al. Quantitative EEG as a predictive biomarker for Parkinson disease dementia. Neurology. 2011; 77(2): 118–24.
52. George JS, Strunk J, Mak-Mccully R, Houser M, Poizner H, Aron AR. Dopaminergic therapy in Parkinson’s disease decreases cortical beta band coherence in the resting state and increases cortical beta band power during executive control. NeuroImage Clin. 2013; 3: 261–70.
53. Lainscsek C, Hernandez ME, Weyhenmeyer J, Sejnowski TJ, Poizner H. Non-linear dynamical analysis of EEG time series distinguishes patients with Parkinson’s disease from healthy individuals. Front Neurol. 2013; 4(Dec): 1–8.
54. Caviness JN, Hentz JG, Belden CM, Shill HA, DriverDunckley ED, Sabbagh MN, et al. Longitudinal EEG changes correlate with cognitive measure deterioration in Parkinson’s disease. J Parkinsons Dis. 2015; 5(1): 117–24.
55. Moazami-Goudarzi M, Sarnthein J, Michels L, Moukhtieva R, Jeanmonod D. Enhanced frontal low and high frequency power and synchronization in the resting EEG of Parkinsonian patients. Neuroimage. 2008; 41(3): 985–97.
56. Bousleiman H, Zimmermann R, Ahmed S, Hardmeier M, Hatz F, Schindler C, et al. Power spectra for screening Parkinsonian patients for mild cognitive impairment. Ann Clin Transl Neurol. 2014; 1(11): 884–90.
57. Benz N, Hatz F, Bousleiman H, Ehrensperger MM, Gschwandtner U, Hardmeier M, et al. Slowing of EEG background activity in Parkinson’s and Alzheimer’s disease with early cognitive dysfunction. Front Aging Neurosci. 2014; 6(Nov): 314.
58. Zimmermann R, Gschwandtner U, Hatz F, Schindler C, Bousleiman H, Ahmed S, et al. Correlation of EEG slowing with cognitive domains in nondemented patients with Parkinson’s disease. Dement Geriatr Cogn Disord. 2015; 39(3–4): 207–14.
59. Han CX, Wang J, Yi GS, Che YQ. Investigation of EEG abnormalities in the early stage of Parkinson’s disease. Cogn Neurodyn. 2013; 7(4): 351–9.
60. Gu Y, Chen J, Lu Y, Pan S. Integrative Frequency Power of EEG Correlates with Progression of Mild Cognitive Impairment to Dementia in Parkinson’s Disease. Clin EEG Neurosci. 2014; (1838).
61. Pugnetti L, Baglio F, Farina E, Alberoni M, Calabrese E, Gambini A, et al. EEG evidence of posterior cortical disconnection in PD and related dementias. Int J Neurosci. 2010; 120(2): 88–98.
62. England A, Schwab R, Peterson E. The electroencephalogram in Parkinson’s syndrome. Electroencephalogr Clin Neurophysiol. 1959; 11: 723–31.
63. Sirakov A, Mezan I. EEG findings in Parkinsonism. Electroencephalogr Clin Neurophysiol. 1963; 15: 321–2.
64. Yeager C, Alberts W, Denature L. Effect of stereotaxic surgery upon electroencephalographic status of Parkinsonian patients. Neurology. 1966; 16: 904–910.
65. De Weerd A, Perquin W, Jonkman E. Role of the EEG in the prediction of dementia in Parkinson’s disease. Dementia. 1990; 1(2): 115–8.
66. Neufeld MY, Inzelberg R, Korczyn AD. EEG in demented and non-demented Parkinsonian patients. Acta Neurol Scand. 1988; 78(1): 1–5.
67. Kotini A, Anninos P, Adamopoulos A, Prassopoulos P. Low-frequency MEG activity and MRI evaluation in Parkinson’s disease. Brain Topogr. 2005; 18(1): 59–63.
68. Bosboom JLW, Stoffers D, Stam CJ, van Dijk BW, Verbunt J, Berendse HW, et al. Resting state oscillatory brain dynamics in Parkinson’s disease: An MEG study. Clin Neurophysiol. 2006; 117(11): 2521–31.
69. Stoffers D, Bosboom JLW, Deijen JB, Wolters EC, Berendse HW, Stam CJ. Slowing of oscillatory brain activity is a stable characteristic of Parkinson’s disease without dementia. Brain. 2007; 130(7): 1847–60.
70. Olde Dubbelink KTE, Stoffers D, Deijen JB, Twisk JWR, Stam CJ, Berendse HW. Cognitive decline in Parkinson’s disease is associated with slowing of resting-state brain activity: A longitudinal study. Neurobiol Aging. 2013; 34(2): 408–18.
71. Caviness JN, Utianski RL, Hentz JG, Beach TG, Dugger BN, Shill HA, et al. Differential spectral quantitative electroencephalography patterns between control and Parkinson’s disease cohorts. Eur J Neurol. 2016; 23(2): 387–92.
72. Amzica F, Lopes Da Silva F. Cellular substrates of brain rhythms. In: Shomer D, Lopes Da Silva F E, editor. Electroencephalography. 6th edn. New York: Lippincott, Williams-and-Wilkins. 2009; p. 33–63.
73. Colgin LL. Mechanisms and functions of theta rhythms. Annu Rev Neurosci. 2013; 36: 295–312.
74. Klimesch W. alpha-band oscillations, attention, and controlled access to stored information. Trends Cogn Sci. 2012; 16(12): 606–17.
75. Schurmann M, Basar E. Functional aspects of alpha oscillations in the EEG. Int J Psychophysiol. 2001; 39(2–3): 151–8.
76. Capilla A, Schoffelen J-M, Paterson G, Thut G, Gross J. Dissociated alpha-band modulations in the dorsal and ventral visual pathways in visuospatial attention and perception. Cereb Cortex. 2014; 24(2): 550–61.
77. Jensen O, Gelfand J, Kounios J, Lisman JE. Oscillations in the alpha band (9-12 Hz) increase with memory load during retention in a short-term memory task. Cereb Cortex. 2002; 12(8): 877–82.
78. Zhang Y, Chen Y, Bressler SL, Ding M. Response preparation and inhibition: the role of the cortical sensorimotor beta rhythm. Neuroscience. 2008; 156(1): 238–46.
79. Grossberg S, Versace M. Spikes, synchrony, and attentive learning by laminar thalamocortical circuits. Brain Res. 2008; 1218: 278–312.
80. Gross J, Pollok B, Dirks M, Timmermann L, Butz M, Schnitzler A. Task-dependent oscillations during unimanual and bimanual movements in the human primary motor cortex and SMA studied with magnetoencephalography. Neuroimage. 2005; 26(1): 91–8.
81. Tallon-Baudry C, Bertrand O, Fischer C. Oscillatory synchrony between human extrastriate areas during visual short-term memory maintenance. J Neurosci. 2001; 21(20): RC177.
82. Sehatpour P, Molholm S, Schwartz TH, Mahoney JR, Mehta AD, Javitt DC, et al. A human intracranial study of long-range oscillatory coherence across a frontaloccipital-hippocampal brain network during visual object processing. Proc Natl Acad Sci USA. 2008; 105(11): 4399–404.
83. Donner TH, Siegel M, Oostenveld R, Fries P, Bauer M, Engel AK. Population activity in the human dorsal pathway predicts the accuracy of visual motion detection. J Neurophysiol. 2007; 98(1): 345–59.
84. Brovelli A, Ding M, Ledberg A, Chen Y, Nakamura R, Bressler SL. Beta oscillations in a large-scale sensorimotor cortical network: directional influences revealed by Granger causality. Proc Natl Acad Sci USA. 2004; 101(26): 9849–54.
85. Stoffers D, Bosboom JLW, Deijen JB, Wolters EC, Stam CJ, Berendse HW. Increased cortico-cortical functional connectivity in early-stage Parkinson’s disease: an MEG study. Neuroimage. 2008; 41(2): 212–22.
86. Bosboom JLW, Stoffers D, Wolters EC, Stam CJ, Berendse HW. MEG resting state functional connectivity in Parkinson’s disease related dementia. J Neural Transm. 2009; 116(2): 193–202.
87. Braak H, Del Tredici K, Rub U, de Vos R, Jansen-Steur E, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging. 2003; 24(2): 197–211.
88. Caviness JN. Pathophysiology of Parkinson’s disease behavior--a view from the network. Parkinsonism Relat Disord. 2014; 20 Suppl 1: S39-43.
89. Gratwicke J, Jahanshahi M, Foltynie T. Parkinson’s disease dementia: a neural networks perspective. Brain. 2015; 138(Pt 6): 1454–76.
90. Utianski RL, Caviness JN, van Straaten ECW, Beach TG, Dugger BN, Shill HA, et al. Graph theory network function in Parkinson’s disease assessed with electroencephalography. Clin Neurophysiol. 2016; 127(5): 2228–36.
91. Stam CJ. Nonlinear dynamical analysis of EEG and MEG: review of an emerging field. Clin Neurophysiol. 2005; 116(10): 2266–301.
92. Nunez PL, Wingeier BM, Silberstein RB. Spatial-temporal structures of human alpha rhythms: theory, micro current sources, multiscale measurements, and global binding of local networks. Hum Brain Mapp. 2001; 13(3): 125–64.
93. Engedal K, Snaedal J, Hoegh P, Jelic V, Bo Andersen B, Naik M, et al. Quantitative EEG Applying the Statistical Recognition Pattern Method: A Useful Tool in Dementia Diagnostic Workup. Dement Geriatr Cogn Disord. 2015; 40(1–2): 1–12.
94. Bocanegra Y, Trujillo-Orrego N, Pineda D. [Dementia and mild cognitive impairment in Parkinson’s disease: a review]. Rev Neurol. 2014; 59(12): 555–69.
Publicado
2018-10-07
Sección
Artículos de Revisión